These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29550580)

  • 21. Tissue Engineering to Repair Diaphragmatic Defect in a Rat Model.
    Liao GP; Choi Y; Vojnits K; Xue H; Aroom K; Meng F; Pan HY; Hetz RA; Corkins CJ; Hughes TG; Triolo F; Johnson A; Moise KJ; Lally KP; Cox CS; Li Y
    Stem Cells Int; 2017; 2017():1764523. PubMed ID: 28928772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D printed TCP-based scaffold incorporating VEGF-loaded PLGA microspheres for craniofacial tissue engineering.
    Fahimipour F; Rasoulianboroujeni M; Dashtimoghadam E; Khoshroo K; Tahriri M; Bastami F; Lobner D; Tayebi L
    Dent Mater; 2017 Nov; 33(11):1205-1216. PubMed ID: 28882369
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diaphragmatic muscle reconstruction with an aligned electrospun poly(ε-caprolactone)/collagen hybrid scaffold.
    Zhao W; Ju YM; Christ G; Atala A; Yoo JJ; Lee SJ
    Biomaterials; 2013 Nov; 34(33):8235-40. PubMed ID: 23932497
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications.
    Attalla R; Ling C; Selvaganapathy P
    Biomed Microdevices; 2016 Feb; 18(1):17. PubMed ID: 26842949
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Implantation of a cone-shaped double-fixed patch increases abdominal space and prevents recurrence of large defects in congenital diaphragmatic hernia.
    Loff S; Wirth H; Jester I; Hosie S; Wollmann C; Schaible T; Ataman O; Waag KL
    J Pediatr Surg; 2005 Nov; 40(11):1701-5. PubMed ID: 16291155
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cardiac regeneration using human-induced pluripotent stem cell-derived biomaterial-free 3D-bioprinted cardiac patch in vivo.
    Yeung E; Fukunishi T; Bai Y; Bedja D; Pitaktong I; Mattson G; Jeyaram A; Lui C; Ong CS; Inoue T; Matsushita H; Abdollahi S; Jay SM; Hibino N
    J Tissue Eng Regen Med; 2019 Nov; 13(11):2031-2039. PubMed ID: 31408915
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimal biomaterial for creation of autologous cardiac grafts.
    Ozawa T; Mickle DA; Weisel RD; Koyama N; Ozawa S; Li RK
    Circulation; 2002 Sep; 106(12 Suppl 1):I176-82. PubMed ID: 12354729
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Absorbable versus nonabsorbable mesh repair of congenital diaphragmatic hernias in a growing animal model.
    Gonzalez R; Hill SJ; Mattar SG; Lin E; Ramshaw BJ; Smith CD; Wulkan ML
    J Laparoendosc Adv Surg Tech A; 2011 Jun; 21(5):449-54. PubMed ID: 21542768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regeneration of the ureter using a scaffold-free live-cell structure created with the bio-three-dimensional printing technique.
    Takagi K; Matsumoto K; Taniguchi D; Machino R; Uchida F; Hara R; Oishi K; Yamane Y; Iwatake M; Eguchi M; Mochizuki Y; Nakayama K; Nagayasu T
    Acta Biomater; 2023 Jul; 165():102-110. PubMed ID: 36243376
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair.
    Jang J; Park HJ; Kim SW; Kim H; Park JY; Na SJ; Kim HJ; Park MN; Choi SH; Park SH; Kim SW; Kwon SM; Kim PJ; Cho DW
    Biomaterials; 2017 Jan; 112():264-274. PubMed ID: 27770630
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Partial replacement of left hemidiaphragm in dogs by either cryopreserved or decellularized heterograft patch.
    Davari HR; Rahim MB; Tanideh N; Sani M; Tavakoli HR; Rasekhi AR; Monabati A; Koohi-Hosseinabadi O; Gholami S
    Interact Cardiovasc Thorac Surg; 2016 Oct; 23(4):623-9. PubMed ID: 27278376
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integration of a calcined bovine bone and BMSC-sheet 3D scaffold and the promotion of bone regeneration in large defects.
    Liu Y; Ming L; Luo H; Liu W; Zhang Y; Liu H; Jin Y
    Biomaterials; 2013 Dec; 34(38):9998-10006. PubMed ID: 24079891
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tissue-engineered cardiac patch seeded with human induced pluripotent stem cell derived cardiomyocytes promoted the regeneration of host cardiomyocytes in a rat model.
    Sugiura T; Hibino N; Breuer CK; Shinoka T
    J Cardiothorac Surg; 2016 Dec; 11(1):163. PubMed ID: 27906085
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Collagen-Vicryl scaffolds for reconstruction of the diaphragm in a large animal model.
    Brouwer KM; Daamen WF; Hoogenkamp HR; Geutjes PJ; de Blaauw I; Janssen-Kessels W; de Boode W; Versteeg E; Wijnen RM; Feitz WF; Wijnen M; van Kuppevelt TH
    J Biomed Mater Res B Appl Biomater; 2014 May; 102(4):756-63. PubMed ID: 24843887
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D-printed scaffolds with synergistic effect of hollow-pipe structure and bioactive ions for vascularized bone regeneration.
    Zhang W; Feng C; Yang G; Li G; Ding X; Wang S; Dou Y; Zhang Z; Chang J; Wu C; Jiang X
    Biomaterials; 2017 Aug; 135():85-95. PubMed ID: 28499127
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Down-regulation of N-deacetylase-N-sulfotransferase-1 signaling in the developing diaphragmatic vasculature of nitrofen-induced congenital diaphragmatic hernia.
    Takahashi T; Friedmacher F; Zimmer J; Puri P
    J Pediatr Surg; 2017 Jun; 52(6):1035-1039. PubMed ID: 28363469
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decreased expression of hepatocyte growth factor in the nitrofen model of congenital diaphragmatic hernia.
    Takahashi T; Friedmacher F; Zimmer J; Puri P
    Pediatr Surg Int; 2016 Oct; 32(10):967-73. PubMed ID: 27480986
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Toldt's fascia flap: a new technique for repairing large diaphragmatic hernias.
    Okazaki T; Hasegawa S; Urushihara N; Fukumoto K; Ogura K; Minato S; Kawashima S; Kohno S
    Pediatr Surg Int; 2005 Jan; 21(1):64-7. PubMed ID: 15449080
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scaffold-Free Bio-3D Printing Using Spheroids as "Bio-Inks" for Tissue (Re-)Construction and Drug Response Tests.
    Murata D; Arai K; Nakayama K
    Adv Healthc Mater; 2020 Aug; 9(15):e1901831. PubMed ID: 32378363
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Gelatin-sulfonated Silk Composite Scaffold based on 3D Printing Technology Enhances Skin Regeneration by Stimulating Epidermal Growth and Dermal Neovascularization.
    Xiong S; Zhang X; Lu P; Wu Y; Wang Q; Sun H; Heng BC; Bunpetch V; Zhang S; Ouyang H
    Sci Rep; 2017 Jun; 7(1):4288. PubMed ID: 28655891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.