BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1103 related articles for article (PubMed ID: 29550582)

  • 1. A deep learning approach for pose estimation from volumetric OCT data.
    Gessert N; Schlüter M; Schlaefer A
    Med Image Anal; 2018 May; 46():162-179. PubMed ID: 29550582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatio-temporal deep learning methods for motion estimation using 4D OCT image data.
    Bengs M; Gessert N; Schlüter M; Schlaefer A
    Int J Comput Assist Radiol Surg; 2020 Jun; 15(6):943-952. PubMed ID: 32445128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Needle tip force estimation by deep learning from raw spectral OCT data.
    Gromniak M; Gessert N; Saathoff T; Schlaefer A
    Int J Comput Assist Radiol Surg; 2020 Oct; 15(10):1699-1702. PubMed ID: 32700243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning with 4D spatio-temporal data representations for OCT-based force estimation.
    Gessert N; Bengs M; Schlüter M; Schlaefer A
    Med Image Anal; 2020 Aug; 64():101730. PubMed ID: 32492583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward Ground-Truth Optical Coherence Tomography via Three-Dimensional Unsupervised Deep Learning Processing and Data.
    Ni G; Wu R; Zheng F; Li M; Huang S; Ge X; Liu L; Liu Y
    IEEE Trans Med Imaging; 2024 Jun; 43(6):2395-2407. PubMed ID: 38324426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images.
    Mylonas A; Keall PJ; Booth JT; Shieh CC; Eade T; Poulsen PR; Nguyen DT
    Med Phys; 2019 May; 46(5):2286-2297. PubMed ID: 30929254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-Time 3D Hand Pose Estimation with 3D Convolutional Neural Networks.
    Ge L; Liang H; Yuan J; Thalmann D
    IEEE Trans Pattern Anal Mach Intell; 2019 Apr; 41(4):956-970. PubMed ID: 29993927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attention-Guided 3D-CNN Framework for Glaucoma Detection and Structural-Functional Association Using Volumetric Images.
    George Y; Antony BJ; Ishikawa H; Wollstein G; Schuman JS; Garnavi R
    IEEE J Biomed Health Inform; 2020 Dec; 24(12):3421-3430. PubMed ID: 32750930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network.
    Lu D; Heisler M; Lee S; Ding GW; Navajas E; Sarunic MV; Beg MF
    Med Image Anal; 2019 May; 54():100-110. PubMed ID: 30856455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment.
    Yoo TK; Choi JY; Seo JG; Ramasubramanian B; Selvaperumal S; Kim DW
    Med Biol Eng Comput; 2019 Mar; 57(3):677-687. PubMed ID: 30349958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully automated detection of retinal disorders by image-based deep learning.
    Li F; Chen H; Liu Z; Zhang X; Wu Z
    Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection, segmentation, and 3D pose estimation of surgical tools using convolutional neural networks and algebraic geometry.
    Hasan MK; Calvet L; Rabbani N; Bartoli A
    Med Image Anal; 2021 May; 70():101994. PubMed ID: 33611053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the efficacy of 2D and 3D CNN algorithms in OCT-based glaucoma detection.
    Rasel RK; Wu F; Chiariglione M; Choi SS; Doble N; Gao XR
    Sci Rep; 2024 May; 14(1):11758. PubMed ID: 38783015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force estimation from OCT volumes using 3D CNNs.
    Gessert N; Beringhoff J; Otte C; Schlaefer A
    Int J Comput Assist Radiol Surg; 2018 Jul; 13(7):1073-1082. PubMed ID: 29728900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated classification of normal and Stargardt disease optical coherence tomography images using deep learning.
    Shah M; Roomans Ledo A; Rittscher J
    Acta Ophthalmol; 2020 Sep; 98(6):e715-e721. PubMed ID: 31981283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Graph Fitting and Sparse Deep Learning Model for Robot Pose Estimation.
    Rodziewicz-Bielewicz J; Korzeń M
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards intelligent robust detection of anatomical structures in incomplete volumetric data.
    Ghesu FC; Georgescu B; Grbic S; Maier A; Hornegger J; Comaniciu D
    Med Image Anal; 2018 Aug; 48():203-213. PubMed ID: 29966940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic Segmentation of Multiple Organs on 3D CT Images by Using Deep Learning Approaches.
    Zhou X
    Adv Exp Med Biol; 2020; 1213():135-147. PubMed ID: 32030668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distortion and instability compensation with deep learning for rotational scanning endoscopic optical coherence tomography.
    Liao G; Caravaca-Mora O; Rosa B; Zanne P; Dall'Alba D; Fiorini P; de Mathelin M; Nageotte F; Gora MJ
    Med Image Anal; 2022 Apr; 77():102355. PubMed ID: 35139483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A convolutional neural network algorithm for automatic segmentation of head and neck organs at risk using deep lifelong learning.
    Chan JW; Kearney V; Haaf S; Wu S; Bogdanov M; Reddick M; Dixit N; Sudhyadhom A; Chen J; Yom SS; Solberg TD
    Med Phys; 2019 May; 46(5):2204-2213. PubMed ID: 30887523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 56.