BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29550669)

  • 1. Production of the potential sweetener 5-ketofructose from fructose in fed-batch cultivation with Gluconobacter oxydans.
    Herweg E; Schöpping M; Rohr K; Siemen A; Frank O; Hofmann T; Deppenmeier U; Büchs J
    Bioresour Technol; 2018 Jul; 259():164-172. PubMed ID: 29550669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of 5-ketofructose from fructose or sucrose using genetically modified Gluconobacter oxydans strains.
    Siemen A; Kosciow K; Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2018 Feb; 102(4):1699-1710. PubMed ID: 29279957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient fermentation of 5-keto-D-fructose with Gluconobacter oxydans at different scales.
    Battling S; Engel T; Herweg E; Niehoff PJ; Pesch M; Scholand T; Schöpping M; Sonntag N; Büchs J
    Microb Cell Fact; 2022 Dec; 21(1):255. PubMed ID: 36496372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel plasmid-free Gluconobacter oxydans strains for production of the natural sweetener 5-ketofructose.
    Battling S; Wohlers K; Igwe C; Kranz A; Pesch M; Wirtz A; Baumgart M; Büchs J; Bott M
    Microb Cell Fact; 2020 Mar; 19(1):54. PubMed ID: 32131833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Pseudomonas putida for production of the natural sweetener 5-ketofructose from fructose or sucrose by periplasmic oxidation with a heterologous fructose dehydrogenase.
    Wohlers K; Wirtz A; Reiter A; Oldiges M; Baumgart M; Bott M
    Microb Biotechnol; 2021 Nov; 14(6):2592-2604. PubMed ID: 34437751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of the alternative sweetener 5-ketofructose from sucrose by fructose dehydrogenase and invertase producing Gluconobacter strains.
    Hoffmann JJ; Hövels M; Kosciow K; Deppenmeier U
    J Biotechnol; 2020 Jan; 307():164-174. PubMed ID: 31704125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of the low-calorie sugar substitute 5-ketofructose by different bacteria.
    Schiessl J; Kosciow K; Garschagen LS; Hoffmann JJ; Heymuth J; Franke T; Deppenmeier U
    Appl Microbiol Biotechnol; 2021 Mar; 105(6):2441-2453. PubMed ID: 33616697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a novel defined minimal medium for Gluconobacter oxydans 621H by systematic investigation of metabolic demands.
    Battling S; Pastoors J; Deitert A; Götzen T; Hartmann L; Schröder E; Yordanov S; Büchs J
    J Biol Eng; 2022 Nov; 16(1):31. PubMed ID: 36414992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High cell density fermentation of Gluconobacter oxydans DSM 2003 for glycolic acid production.
    Wei G; Yang X; Gan T; Zhou W; Lin J; Wei D
    J Ind Microbiol Biotechnol; 2009 Aug; 36(8):1029-34. PubMed ID: 19434434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. L-Erythrulose production with a multideletion strain of Gluconobacter oxydans.
    Burger C; Kessler C; Gruber S; Ehrenreich A; Liebl W; Weuster-Botz D
    Appl Microbiol Biotechnol; 2019 Jun; 103(11):4393-4404. PubMed ID: 31001743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Process for the successive production of calcium galactonate crystals by Gluconobacter oxydans.
    Zhou X; Hua X; Zhou X; Xu Y
    Bioresour Technol; 2018 Aug; 261():458-460. PubMed ID: 29685484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of membrane-bound gluconate-2-dehydrogenase to enhance the production of 2-keto-D-gluconic acid by Gluconobacter oxydans.
    Li K; Mao X; Liu L; Lin J; Sun M; Wei D; Yang S
    Microb Cell Fact; 2016 Jul; 15(1):121. PubMed ID: 27392695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the production yield and productivity of 1,3-dihydroxyacetone from glycerol fermentation using Gluconobacter oxydans NL71 in a compressed oxygen supply-sealed and stirred tank reactor (COS-SSTR).
    Zhou X; Zhou X; Xu Y; Yu S
    Bioprocess Biosyst Eng; 2016 Aug; 39(8):1315-8. PubMed ID: 27021347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combinatorial metabolic engineering of industrial Gluconobacter oxydans DSM2343 for boosting 5-keto-D-gluconic acid accumulation.
    Yuan J; Wu M; Lin J; Yang L
    BMC Biotechnol; 2016 May; 16(1):42. PubMed ID: 27189063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The 5-Ketofructose Reductase of
    Nguyen TM; Goto M; Noda S; Matsutani M; Hodoya Y; Kataoka N; Adachi O; Matsushita K; Yakushi T
    J Bacteriol; 2021 Sep; 203(19):e0055820. PubMed ID: 34309403
    [No Abstract]   [Full Text] [Related]  

  • 16. Enhancement of cell growth and glycolic acid production by overexpression of membrane-bound alcohol dehydrogenase in Gluconobacter oxydans DSM 2003.
    Zhang H; Shi L; Mao X; Lin J; Wei D
    J Biotechnol; 2016 Nov; 237():18-24. PubMed ID: 27619641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose oxidation by Gluconobacter oxydans: characterization in shaking-flasks, scale-up and optimization of the pH profile.
    Silberbach M; Maier B; Zimmermann M; Büchs J
    Appl Microbiol Biotechnol; 2003 Jul; 62(1):92-8. PubMed ID: 12835926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of 1,3-dihydroxyacetone production by a UV-induced mutant of Gluconobacter oxydans with DO control strategy.
    Hu ZC; Zheng YG
    Appl Biochem Biotechnol; 2011 Nov; 165(5-6):1152-60. PubMed ID: 21833510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient aerobic fermentation of gluconic acid by high tension oxygen supply strategy with reusable Gluconobacter oxydans HG19 cells.
    Lian Z; Dai L; Zhang R; Liu Y; Zhou X; Xu Y
    Bioprocess Biosyst Eng; 2022 Nov; 45(11):1849-1855. PubMed ID: 36149483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Yield Production of Dihydroxyacetone from Crude Glycerol in Fed-Batch Cultures of
    Górska K; Garncarek Z
    Molecules; 2024 Jun; 29(12):. PubMed ID: 38930996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.