These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
674 related articles for article (PubMed ID: 29550684)
41. Analysis of volatiles from stored wheat and Rhyzopertha dominica (F.) with solid phase microextraction-gas chromatography mass spectrometry. Niu Y; Hua L; Hardy G; Agarwal M; Ren Y J Sci Food Agric; 2016 Mar; 96(5):1697-703. PubMed ID: 26018460 [TBL] [Abstract][Full Text] [Related]
42. Identification of volatiles from oxidised phosphatidylcholine molecular species using headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS). Zhou L; Zhao M; Khalil A; Marcic C; Bindler F; Marchioni E Anal Bioanal Chem; 2013 Nov; 405(28):9125-37. PubMed ID: 24077831 [TBL] [Abstract][Full Text] [Related]
43. Determination of volatile organic compounds including alcohols in refill fluids and cartridges of electronic cigarettes by headspace solid-phase micro extraction and gas chromatography-mass spectrometry. Lim HH; Shin HS Anal Bioanal Chem; 2017 Feb; 409(5):1247-1256. PubMed ID: 27826631 [TBL] [Abstract][Full Text] [Related]
44. Determination of volatile organic compounds (VOCs) in indoor work environments by solid phase microextraction-gas chromatography-mass spectrometry. Marchesiello WMV; Spadaccino G; Usman M; Nardiello D; Quinto M Environ Sci Pollut Res Int; 2024 Aug; 31(40):52804-52814. PubMed ID: 39160406 [TBL] [Abstract][Full Text] [Related]
45. Unveiling the Molecular Basis of Mascarpone Cheese Aroma: VOCs analysis by SPME-GC/MS and PTR-ToF-MS. Capozzi V; Lonzarich V; Khomenko I; Cappellin L; Navarini L; Biasioli F Molecules; 2020 Mar; 25(5):. PubMed ID: 32164157 [TBL] [Abstract][Full Text] [Related]
46. Headspace solid-phase microextraction-gas chromatography-mass spectrometry for profiling free volatile compounds in Cabernet Sauvignon grapes and wines. Canuti V; Conversano M; Calzi ML; Heymann H; Matthews MA; Ebeler SE J Chromatogr A; 2009 Apr; 1216(15):3012-22. PubMed ID: 19233370 [TBL] [Abstract][Full Text] [Related]
47. Development and validation of headspace Solid-Phase microextraction coupled with gas chromatography (HS-SPME-GC) method for the analysis of Bhavya ML; Ravi R; Madhava Naidu M Nat Prod Res; 2021 Apr; 35(7):1221-1225. PubMed ID: 31328550 [TBL] [Abstract][Full Text] [Related]
48. Development of a HS-SPME/GC-MS method for the analysis of volatile organic compounds from fabrics for forensic reconstruction applications. Gherghel S; Morgan RM; Arrebola-Liébanas J; Romero-González R; Blackman CS; Garrido-Frenich A; Parkin IP Forensic Sci Int; 2018 Sep; 290():207-218. PubMed ID: 30077076 [TBL] [Abstract][Full Text] [Related]
49. Discrimination and characterization of different coconut water (CW) by their phenolic composition and volatile organic compounds (VOCs) using LC-MS/MS, HS-SPME-GC-MS, and HS-GC-IMS. Zhang W; Chen Y; Yun Y; Li C; Fang Y; Zhang W J Food Sci; 2023 Sep; 88(9):3758-3772. PubMed ID: 37530630 [TBL] [Abstract][Full Text] [Related]
50. Distribution of volatile organic compounds in Sicilian groundwaters analysed by head space-solid phase micro extraction coupled with gas chromatography mass spectrometry (SPME/GC/MS). Pecoraino G; Scalici L; Avellone G; Ceraulo L; Favara R; Candela EG; Provenzano MC; Scaletta C Water Res; 2008 Aug; 42(14):3563-77. PubMed ID: 18703213 [TBL] [Abstract][Full Text] [Related]
51. A new HS-SPME-GC-MS analytical method to identify and quantify compounds responsible for changes in the volatile profile in five types of meat products during aerobic storage at 4 °C. Acquaticci L; Angeloni S; Baldassarri C; Sagratini G; Vittori S; Torregiani E; Petrelli R; Caprioli G Food Res Int; 2024 Jul; 187():114398. PubMed ID: 38763656 [TBL] [Abstract][Full Text] [Related]
52. Solid phase microextraction sampling for a rapid and simple on-site evaluation of volatile organic compounds emitted from building materials. Nicolle J; Desauziers V; Mocho P J Chromatogr A; 2008 Oct; 1208(1-2):10-5. PubMed ID: 18771772 [TBL] [Abstract][Full Text] [Related]
53. Metabolite profiling on apple volatile content based on solid phase microextraction and gas-chromatography time of flight mass spectrometry. Aprea E; Gika H; Carlin S; Theodoridis G; Vrhovsek U; Mattivi F J Chromatogr A; 2011 Jul; 1218(28):4517-24. PubMed ID: 21641602 [TBL] [Abstract][Full Text] [Related]
54. Headspace solid phase microextraction and gas chromatography-quadrupole mass spectrometry methodology for analysis of volatile compounds of marine salt as potential origin biomarkers. Silva I; Rocha SM; Coimbra MA Anal Chim Acta; 2009 Mar; 635(2):167-74. PubMed ID: 19216874 [TBL] [Abstract][Full Text] [Related]
55. Optimization of headspace solid phase microextraction for the analysis of microbial volatile organic compounds emitted by fungi: Application to historical objects. Sawoszczuk T; Syguła-Cholewińska J; del Hoyo-Meléndez JM J Chromatogr A; 2015 Aug; 1409():30-45. PubMed ID: 26209190 [TBL] [Abstract][Full Text] [Related]
56. Volatile metabolomic signature of bladder cancer cell lines based on gas chromatography-mass spectrometry. Rodrigues D; Pinto J; Araújo AM; Monteiro-Reis S; Jerónimo C; Henrique R; de Lourdes Bastos M; de Pinho PG; Carvalho M Metabolomics; 2018 Apr; 14(5):62. PubMed ID: 30830384 [TBL] [Abstract][Full Text] [Related]
57. Volatile fingerprints and biomarkers of three representative kiwifruit cultivars obtained by headspace solid-phase microextraction gas chromatography mass spectrometry and chemometrics. Zhang CY; Zhang Q; Zhong CH; Guo MQ Food Chem; 2019 Jan; 271():211-215. PubMed ID: 30236669 [TBL] [Abstract][Full Text] [Related]
58. Preparation of novel alumina nanowire solid-phase microextraction fiber coating for ultra-selective determination of volatile esters and alcohols from complicated food samples. Zhang Z; Ma Y; Wang Q; Chen A; Pan Z; Li G J Chromatogr A; 2013 May; 1290():27-35. PubMed ID: 23582855 [TBL] [Abstract][Full Text] [Related]
59. Analysis of Listeria using exogenous volatile organic compound metabolites and their detection by static headspace-multi-capillary column-gas chromatography-ion mobility spectrometry (SHS-MCC-GC-IMS). Taylor C; Lough F; Stanforth SP; Schwalbe EC; Fowlis IA; Dean JR Anal Bioanal Chem; 2017 Jul; 409(17):4247-4256. PubMed ID: 28484808 [TBL] [Abstract][Full Text] [Related]
60. Development of a dynamic headspace solid-phase microextraction procedure coupled to GC-qMSD for evaluation the chemical profile in alcoholic beverages. Rodrigues F; Caldeira M; Câmara JS Anal Chim Acta; 2008 Feb; 609(1):82-104. PubMed ID: 18243877 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]