BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 29550786)

  • 1. Quantification of energy expenditure of military loaded runs: what is the performance of laboratory-based equations when applied to the field environment?
    Colosio AL; Pogliaghi S
    J R Army Med Corps; 2018 Aug; 164(4):253-258. PubMed ID: 29550786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heart Rate-Index Estimates Oxygen Uptake, Energy Expenditure and Aerobic Fitness in Rugby Players.
    Colosio AL; Pedrinolla A; Da Lozzo G; Pogliaghi S
    J Sports Sci Med; 2018 Dec; 17(4):633-639. PubMed ID: 30479532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heart rate-index estimates aerobic metabolism in professional soccer players.
    Colosio AL; Lievens M; Pogliaghi S; Bourgois JG; Boone J
    J Sci Med Sport; 2020 Dec; 23(12):1208-1214. PubMed ID: 32423737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application and performance of heart-rate-based methods to estimate oxygen consumption at different exercise intensities in postmenopausal women.
    Colosio AL; Teso M; Boone J; Pogliaghi S
    Eur J Appl Physiol; 2024 May; 124(5):1439-1448. PubMed ID: 38110731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring exercise intensity in diabetes: applicability of "heart rate-index" to estimate oxygen consumption during aerobic and resistance training.
    Colosio AL; Spigolon G; Bacchi E; Moghetti P; Pogliaghi S
    J Endocrinol Invest; 2020 May; 43(5):623-630. PubMed ID: 31782111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous heart rate-motion sensor technique to estimate energy expenditure.
    Strath SJ; Bassett DR; Swartz AM; Thompson DL
    Med Sci Sports Exerc; 2001 Dec; 33(12):2118-23. PubMed ID: 11740308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy expenditure estimates of the Caltrac accelerometer for running, race walking, and stepping.
    Swan PD; Byrnes WC; Haymes EM
    Br J Sports Med; 1997 Sep; 31(3):235-9. PubMed ID: 9298560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of heart rate to predict energy expenditure from low to high activity levels.
    Hiilloskorpi HK; Pasanen ME; Fogelholm MG; Laukkanen RM; Mänttäri AT
    Int J Sports Med; 2003 Jul; 24(5):332-6. PubMed ID: 12868043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simplification of the method of assessing daily and nightly energy expenditure in children, using heart rate monitoring calibrated against open circuit indirect calorimetry.
    Beghin L; Budniok T; Vaksman G; Boussard-Delbecque L; Michaud L; Turck D; Gottrand F
    Clin Nutr; 2000 Dec; 19(6):425-35. PubMed ID: 11104594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting METs from the heart rate index in persons with Down syndrome.
    Agiovlasitis S; Rossow LM; Yan H; Ranadive SM; Fahs CA; Motl RW; Fernhall B
    Res Dev Disabil; 2014 Oct; 35(10):2423-9. PubMed ID: 24981191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of Apple Watch Measurements for Heart Rate and Energy Expenditure in Patients With Cardiovascular Disease: Cross-Sectional Study.
    Falter M; Budts W; Goetschalckx K; Cornelissen V; Buys R
    JMIR Mhealth Uhealth; 2019 Mar; 7(3):e11889. PubMed ID: 30888332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic heart rate normalization for accurate energy expenditure estimation. An analysis of activities of daily living and heart rate features.
    Altini M; Penders J; Vullers R; Amft O
    Methods Inf Med; 2014; 53(5):382-8. PubMed ID: 25245124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heart rate measurements as an index of energy expenditure and energy balance in ruminants: a review.
    Brosh A
    J Anim Sci; 2007 May; 85(5):1213-27. PubMed ID: 17224466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of carrying different military equipment during a fatigue test on shooting performance.
    Gil-Cosano JJ; Orantes-Gonzalez E; Heredia-Jimenez J
    Eur J Sport Sci; 2019 Mar; 19(2):186-191. PubMed ID: 30043678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive validity of three ActiGraph energy expenditure equations for children.
    Trost SG; Way R; Okely AD
    Med Sci Sports Exerc; 2006 Feb; 38(2):380-7. PubMed ID: 16531910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EMG, heart rate, and accelerometer as estimators of energy expenditure in locomotion.
    Tikkanen O; Kärkkäinen S; Haakana P; Kallinen M; Pullinen T; Finni T
    Med Sci Sports Exerc; 2014 Sep; 46(9):1831-9. PubMed ID: 24504428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents.
    Zakeri IF; Adolph AL; Puyau MR; Vohra FA; Butte NF
    J Appl Physiol (1985); 2010 Jan; 108(1):128-36. PubMed ID: 19892930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic Costs of Military Load Carriage over Complex Terrain.
    Looney DP; Santee WR; Karis AJ; Blanchard LA; Rome MN; Carter AJ; Potter AW
    Mil Med; 2018 Sep; 183(9-10):e357-e362. PubMed ID: 29860513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Between-day and within-day variability in the relation between heart rate and oxygen consumption: effect on the estimation of energy expenditure by heart-rate monitoring.
    McCrory MA; Molé PA; Nommsen-Rivers LA; Dewey KG
    Am J Clin Nutr; 1997 Jul; 66(1):18-25. PubMed ID: 9209164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ambulatory physical activity in Swiss Army recruits.
    Wyss T; Scheffler J; Mäder U
    Int J Sports Med; 2012 Sep; 33(9):716-22. PubMed ID: 22706943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.