BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 29550875)

  • 1. Intelligent testing strategy and analytical techniques for the safety assessment of nanomaterials.
    Chen R; Qiao J; Bai R; Zhao Y; Chen C
    Anal Bioanal Chem; 2018 Sep; 410(24):6051-6066. PubMed ID: 29550875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive In Vitro Toxicity Testing of a Panel of Representative Oxide Nanomaterials: First Steps towards an Intelligent Testing Strategy.
    Farcal L; Torres Andón F; Di Cristo L; Rotoli BM; Bussolati O; Bergamaschi E; Mech A; Hartmann NB; Rasmussen K; Riego-Sintes J; Ponti J; Kinsner-Ovaskainen A; Rossi F; Oomen A; Bos P; Chen R; Bai R; Chen C; Rocks L; Fulton N; Ross B; Hutchison G; Tran L; Mues S; Ossig R; Schnekenburger J; Campagnolo L; Vecchione L; Pietroiusti A; Fadeel B
    PLoS One; 2015; 10(5):e0127174. PubMed ID: 25996496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High throughput toxicity screening and intracellular detection of nanomaterials.
    Collins AR; Annangi B; Rubio L; Marcos R; Dorn M; Merker C; Estrela-Lopis I; Cimpan MR; Ibrahim M; Cimpan E; Ostermann M; Sauter A; Yamani NE; Shaposhnikov S; Chevillard S; Paget V; Grall R; Delic J; de-Cerio FG; Suarez-Merino B; Fessard V; Hogeveen KN; Fjellsbø LM; Pran ER; Brzicova T; Topinka J; Silva MJ; Leite PE; Ribeiro AR; Granjeiro JM; Grafström R; Prina-Mello A; Dusinska M
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 Jan; 9(1):. PubMed ID: 27273980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Current Understanding of Autophagy in Nanomaterial Toxicity and Its Implementation in Safety Assessment-Related Alternative Testing Strategies.
    Chen RJ; Chen YY; Liao MY; Lee YH; Chen ZY; Yan SJ; Yeh YL; Yang LX; Lee YL; Wu YH; Wang YJ
    Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32235610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternative Testing Strategies for Nanomaterials: State of the Science and Considerations for Risk Analysis.
    Shatkin JA; Ong KJ
    Risk Anal; 2016 Aug; 36(8):1564-80. PubMed ID: 27273523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of physicochemical properties of nanomaterials and their immediate environments in high-throughput screening of nanomaterial biological activity.
    Wang A; Marinakos SM; Badireddy AR; Powers CM; Houck KA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(5):430-48. PubMed ID: 23661551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implementing Toxicity Testing in the 21st Century (TT21C): Making safety decisions using toxicity pathways, and progress in a prototype risk assessment.
    Adeleye Y; Andersen M; Clewell R; Davies M; Dent M; Edwards S; Fowler P; Malcomber S; Nicol B; Scott A; Scott S; Sun B; Westmoreland C; White A; Zhang Q; Carmichael PL
    Toxicology; 2015 Jun; 332():102-11. PubMed ID: 24582757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunotoxicity, genotoxicity and epigenetic toxicity of nanomaterials: New strategies for toxicity testing?
    Dusinska M; Tulinska J; El Yamani N; Kuricova M; Liskova A; Rollerova E; Rundén-Pran E; Smolkova B
    Food Chem Toxicol; 2017 Nov; 109(Pt 1):797-811. PubMed ID: 28847762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grouping of nanomaterials to read-across hazard endpoints: from data collection to assessment of the grouping hypothesis by application of chemoinformatic techniques.
    Lamon L; Asturiol D; Richarz A; Joossens E; Graepel R; Aschberger K; Worth A
    Part Fibre Toxicol; 2018 Sep; 15(1):37. PubMed ID: 30249272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creative use of analytical techniques and high-throughput technology to facilitate safety assessment of engineered nanomaterials.
    Liu Q; Wang X; Xia T
    Anal Bioanal Chem; 2018 Sep; 410(24):6097-6111. PubMed ID: 30066194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adoption of in vitro systems and zebrafish embryos as alternative models for reducing rodent use in assessments of immunological and oxidative stress responses to nanomaterials.
    Johnston HJ; Verdon R; Gillies S; Brown DM; Fernandes TF; Henry TB; Rossi AG; Tran L; Tucker C; Tyler CR; Stone V
    Crit Rev Toxicol; 2018 Mar; 48(3):252-271. PubMed ID: 29239234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the relationship between nanomaterial hazard and physicochemical properties: Informing the exploitation of nanomaterials within therapeutic and diagnostic applications.
    Johnston H; Brown D; Kermanizadeh A; Gubbins E; Stone V
    J Control Release; 2012 Dec; 164(3):307-13. PubMed ID: 22940205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expert consensus on an in vitro approach to assess pulmonary fibrogenic potential of aerosolized nanomaterials.
    Clippinger AJ; Ahluwalia A; Allen D; Bonner JC; Casey W; Castranova V; David RM; Halappanavar S; Hotchkiss JA; Jarabek AM; Maier M; Polk W; Rothen-Rutishauser B; Sayes CM; Sayre P; Sharma M; Stone V
    Arch Toxicol; 2016 Jul; 90(7):1769-83. PubMed ID: 27121469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manufactured nanomaterials: categorization and approaches to hazard assessment.
    Gebel T; Foth H; Damm G; Freyberger A; Kramer PJ; Lilienblum W; Röhl C; Schupp T; Weiss C; Wollin KM; Hengstler JG
    Arch Toxicol; 2014 Dec; 88(12):2191-211. PubMed ID: 25326817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ingested engineered nanomaterials: state of science in nanotoxicity testing and future research needs.
    Sohal IS; O'Fallon KS; Gaines P; Demokritou P; Bello D
    Part Fibre Toxicol; 2018 Jul; 15(1):29. PubMed ID: 29970114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adverse outcome pathways as a tool for the design of testing strategies to support the safety assessment of emerging advanced materials at the nanoscale.
    Halappanavar S; van den Brule S; Nymark P; Gaté L; Seidel C; Valentino S; Zhernovkov V; Høgh Danielsen P; De Vizcaya A; Wolff H; Stöger T; Boyadziev A; Poulsen SS; Sørli JB; Vogel U
    Part Fibre Toxicol; 2020 May; 17(1):16. PubMed ID: 32450889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developing Integrated Approaches for Testing and Assessment (IATAs) in order to support nanomaterial safety.
    Powell LG; Gillies S; Fernandes TF; Murphy F; Giubilato E; Cazzagon V; Hristozov D; Pizzol L; Blosi M; Costa AL; Prina-Mello A; Bouwmeester H; Sarimveis H; Janer G; Stone V
    Nanotoxicology; 2022 May; 16(4):484-499. PubMed ID: 35913849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The primacy of physicochemical characterization of nanomaterials for reliable toxicity assessment: a review of the zebrafish nanotoxicology model.
    Bohnsack JP; Assemi S; Miller JD; Furgeson DY
    Methods Mol Biol; 2012; 926():261-316. PubMed ID: 22975971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced nuclear analytical and related techniques for the growing challenges in nanotoxicology.
    Chen C; Li YF; Qu Y; Chai Z; Zhao Y
    Chem Soc Rev; 2013 Nov; 42(21):8266-303. PubMed ID: 23868609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of In Vitro and In Vivo Models to Predict Cellular and Tissue Dosimetry of Nanomaterials Using Physiologically Based Pharmacokinetic Modeling.
    Lin Z; Aryal S; Cheng YH; Gesquiere AJ
    ACS Nano; 2022 Dec; 16(12):19722-19754. PubMed ID: 36520546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.