These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 29550885)

  • 1. Nitrate uptake in an agricultural stream estimated from high-frequency, in-situ sensors.
    Jones CS; Kim SW; Wilton TF; Schilling KE; Davis CA
    Environ Monit Assess; 2018 Mar; 190(4):226. PubMed ID: 29550885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of continuous monitoring to assess stream nitrate flux and transformation patterns.
    Jones C; Kim SW; Schilling K
    Environ Monit Assess; 2017 Jan; 189(1):35. PubMed ID: 28013474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous In-Stream Assimilatory Nitrate Uptake from High-Frequency Sensor Measurements.
    Rode M; Halbedel Née Angelstein S; Anis MR; Borchardt D; Weitere M
    Environ Sci Technol; 2016 Jun; 50(11):5685-94. PubMed ID: 27174385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Denitrification in nitrate-rich streams: application of N2:Ar and 15N-tracer methods in intact cores.
    Smith LK; Voytek MA; Böhlke JK; Harvey JW
    Ecol Appl; 2006 Dec; 16(6):2191-207. PubMed ID: 17205897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative identification of nitrate pollution sources and uncertainty analysis based on dual isotope approach in an agricultural watershed.
    Ji X; Xie R; Hao Y; Lu J
    Environ Pollut; 2017 Oct; 229():586-594. PubMed ID: 28689147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of nitrate-nitrogen concentration in groundwater to stream water in an agricultural head watershed.
    Lee CM; Hamm SY; Cheong JY; Kim K; Yoon H; Kim M; Kim J
    Environ Res; 2020 May; 184():109313. PubMed ID: 32151840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 15N-Nitrate signature in low-order streams: effects of land cover and agricultural practices.
    Lefebvre S; Clément JC; Pinay G; Thenail C; Durand P; Marmonier P
    Ecol Appl; 2007 Dec; 17(8):2333-46. PubMed ID: 18213973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole-stream response to nitrate loading in three streams draining agricultural landscapes.
    Duff JH; Tesoriero AJ; Richardson WB; Strauss EA; Munn MD
    J Environ Qual; 2008; 37(3):1133-44. PubMed ID: 18453433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using major ions and δ15N-NO3(-) to identify nitrate sources and fate in an alluvial aquifer of the Baiyangdian lake watershed, North China Plain.
    Wang S; Tang C; Song X; Yuan R; Wang Q; Zhang Y
    Environ Sci Process Impacts; 2013 Jul; 15(7):1430-43. PubMed ID: 23743546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iowa Stream Nitrate, Discharge and Precipitation: 30-Year Perspective.
    Jones CS; Schilling KE; Simpson IM; Wolter CF
    Environ Manage; 2018 Oct; 62(4):709-720. PubMed ID: 29855688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen sources and cycling revealed by dual isotopes of nitrate in a complex urbanized environment.
    Archana A; Thibodeau B; Geeraert N; Xu MN; Kao SJ; Baker DM
    Water Res; 2018 Oct; 142():459-470. PubMed ID: 29913387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrate concentrations in river waters of the upper Thames and its tributaries.
    Neal C; Jarvie HP; Neal M; Hill L; Wickham H
    Sci Total Environ; 2006 Jul; 365(1-3):15-32. PubMed ID: 16618496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen source track and associated isotopic dynamic characteristic in a complex ecosystem: A case study of a subtropical watershed, China.
    Hao Z; Zhang X; Gao Y; Xu Z; Yang F; Wen X; Wang Y
    Environ Pollut; 2018 May; 236():177-187. PubMed ID: 29414338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stream-aquifer and in-stream processes affecting nitrogen along a major river and contributing tributary.
    Huizenga A; Bailey RT; Gates TK
    J Contam Hydrol; 2017 Apr; 199():24-35. PubMed ID: 28342549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using dual isotopes to evaluate sources and transformations of nitrate in the West Lake watershed, eastern China.
    Jin Z; Qin X; Chen L; Jin M; Li F
    J Contam Hydrol; 2015; 177-178():64-75. PubMed ID: 25835546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving nitrate load estimates in an agricultural catchment using Event Response Reconstruction.
    Jomaa S; Aboud I; Dupas R; Yang X; Rozemeijer J; Rode M
    Environ Monit Assess; 2018 May; 190(6):330. PubMed ID: 29732470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. River water infiltration enhances denitrification efficiency in riparian groundwater.
    Trauth N; Musolff A; Knöller K; Kaden US; Keller T; Werban U; Fleckenstein JH
    Water Res; 2018 Mar; 130():185-199. PubMed ID: 29223089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracking nitrate sources in groundwater and associated health risk for rural communities in the White Volta River basin of Ghana using isotopic approach (δ
    Anornu G; Gibrilla A; Adomako D
    Sci Total Environ; 2017 Dec; 603-604():687-698. PubMed ID: 28434612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isotopic evidence of nitrate sources and its transformations in a human-impacted watershed.
    Ding J; Xi B; Xu Q; Meng H; Shen Y; Cheng H
    Environ Sci Process Impacts; 2019 Mar; 21(3):575-583. PubMed ID: 30758007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of wheat-maize straw return on the fate of nitrate in groundwater in the Huaihe River Basin, China.
    Li R; Ruan X; Bai Y; Ma T; Liu C
    Sci Total Environ; 2017 Aug; 592():78-85. PubMed ID: 28314133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.