BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 29551268)

  • 61. Deciphering the rules by which dynamics of mRNA secondary structure affect translation efficiency in Saccharomyces cerevisiae.
    Mao Y; Liu H; Liu Y; Tao S
    Nucleic Acids Res; 2014 Apr; 42(8):4813-22. PubMed ID: 24561808
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Specificity of mRNA Folding and Its Association with Evolutionarily Adaptive mRNA Secondary Structures.
    Yu G; Zhu H; Chen X; Yang JR
    Genomics Proteomics Bioinformatics; 2021 Dec; 19(6):882-900. PubMed ID: 33607297
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The genetic code as expressed through relationships between mRNA structure and protein function.
    Mauger DM; Siegfried NA; Weeks KM
    FEBS Lett; 2013 Apr; 587(8):1180-1188. PubMed ID: 23499436
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites.
    Espah Borujeni A; Channarasappa AS; Salis HM
    Nucleic Acids Res; 2014 Feb; 42(4):2646-59. PubMed ID: 24234441
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Staufen1 senses overall transcript secondary structure to regulate translation.
    Ricci EP; Kucukural A; Cenik C; Mercier BC; Singh G; Heyer EE; Ashar-Patel A; Peng L; Moore MJ
    Nat Struct Mol Biol; 2014 Jan; 21(1):26-35. PubMed ID: 24336223
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Higher order structures of the 5'-proximal region decrease the efficiency of translation of the porcine pro-opiomelanocortin mRNA.
    Chevrier D; Vézina C; Bastille J; Linard C; Sonenberg N; Boileau G
    J Biol Chem; 1988 Jan; 263(2):902-10. PubMed ID: 2826467
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Slowing bacterial translation speed enhances eukaryotic protein folding efficiency.
    Siller E; DeZwaan DC; Anderson JF; Freeman BC; Barral JM
    J Mol Biol; 2010 Mar; 396(5):1310-8. PubMed ID: 20043920
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A network of orthogonal ribosome x mRNA pairs.
    Rackham O; Chin JW
    Nat Chem Biol; 2005 Aug; 1(3):159-66. PubMed ID: 16408021
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Analyses of mRNA structure dynamics identify embryonic gene regulatory programs.
    Beaudoin JD; Novoa EM; Vejnar CE; Yartseva V; Takacs CM; Kellis M; Giraldez AJ
    Nat Struct Mol Biol; 2018 Aug; 25(8):677-686. PubMed ID: 30061596
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Computational approaches for the discovery of splicing regulatory RNA structures.
    Andrews RJ; Moss WN
    Biochim Biophys Acta Gene Regul Mech; 2019; 1862(11-12):194380. PubMed ID: 31048028
    [TBL] [Abstract][Full Text] [Related]  

  • 71. In vivo analysis of influenza A mRNA secondary structures identifies critical regulatory motifs.
    Simon LM; Morandi E; Luganini A; Gribaudo G; Martinez-Sobrido L; Turner DH; Oliviero S; Incarnato D
    Nucleic Acids Res; 2019 Jul; 47(13):7003-7017. PubMed ID: 31053845
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Visualization of lncRNA and mRNA Structure Models Within the Integrative Genomics Viewer.
    Busan S; Weeks KM
    Methods Mol Biol; 2021; 2254():15-25. PubMed ID: 33326067
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Entropy-based mechanism of ribosome-nucleoid segregation in E. coli cells.
    Mondal J; Bratton BP; Li Y; Yethiraj A; Weisshaar JC
    Biophys J; 2011 Jun; 100(11):2605-13. PubMed ID: 21641305
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Number variation of high stability regions is correlated with gene functions.
    Mao Y; Li Q; Wang W; Liang P; Tao S
    Genome Biol Evol; 2013; 5(3):484-93. PubMed ID: 23407773
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Allele-specific SHAPE-MaP assessment of the effects of somatic variation and protein binding on mRNA structure.
    Lackey L; Coria A; Woods C; McArthur E; Laederach A
    RNA; 2018 Apr; 24(4):513-528. PubMed ID: 29317542
    [TBL] [Abstract][Full Text] [Related]  

  • 76. RNA structure profiling at single-cell resolution reveals new determinants of cell identity.
    Wang J; Zhang Y; Zhang T; Tan WT; Lambert F; Darmawan J; Huber R; Wan Y
    Nat Methods; 2024 Mar; 21(3):411-422. PubMed ID: 38177506
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Force-Induced Visualization of Nucleic Acid Functions with Single-Nucleotide Resolution.
    Hu Q; Jia H; Wang Y; Xu S
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765816
    [TBL] [Abstract][Full Text] [Related]  

  • 78. [Not Available].
    Lichtenthaeler C; Oberstrass L; Weigand JE
    Biospektrum (Heidelb); 2021; 27(4):351-354. PubMed ID: 34219980
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Ribosome Levels Selectively Regulate Translation and Lineage Commitment in Human Hematopoiesis.
    Khajuria RK; Munschauer M; Ulirsch JC; Fiorini C; Ludwig LS; McFarland SK; Abdulhay NJ; Specht H; Keshishian H; Mani DR; Jovanovic M; Ellis SR; Fulco CP; Engreitz JM; Schütz S; Lian J; Gripp KW; Weinberg OK; Pinkus GS; Gehrke L; Regev A; Lander ES; Gazda HT; Lee WY; Panse VG; Carr SA; Sankaran VG
    Cell; 2018 Mar; 173(1):90-103.e19. PubMed ID: 29551269
    [TBL] [Abstract][Full Text] [Related]  

  • 80. In-cell RNA structure probing with SHAPE-MaP.
    Smola MJ; Weeks KM
    Nat Protoc; 2018 Jun; 13(6):1181-1195. PubMed ID: 29725122
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.