These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Spontaneous otoacoustic emissions from free-standing stereovillar bundles of ten species of lizard with small papillae. Manley GA Hear Res; 2006 Feb; 212(1-2):33-47. PubMed ID: 16307854 [TBL] [Abstract][Full Text] [Related]
3. Spontaneous otoacoustic emissions in lizards: a comparison of the skink-like lizard families Cordylidae and Gerrhosauridae. Manley GA Hear Res; 2009 Sep; 255(1-2):58-66. PubMed ID: 19539017 [TBL] [Abstract][Full Text] [Related]
6. Modeling the characteristics of spontaneous otoacoustic emissions in lizards. Wit HP; Manley GA; van Dijk P Hear Res; 2020 Jan; 385():107840. PubMed ID: 31760263 [TBL] [Abstract][Full Text] [Related]
7. Spontaneous otoacoustic emissions in the bobtail lizard. I: General characteristics. Köppl C; Manley GA Hear Res; 1993 Dec; 71(1-2):157-69. PubMed ID: 8113134 [TBL] [Abstract][Full Text] [Related]
8. Spontaneous otoacoustic emissions in the bobtail lizard. III: Temperature effects. Manley GA; Köppl C Hear Res; 1994 Jan; 72(1-2):171-80. PubMed ID: 8150733 [TBL] [Abstract][Full Text] [Related]
9. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions. Manley GA; van Dijk P Hear Res; 2016 Jun; 336():53-62. PubMed ID: 27139323 [TBL] [Abstract][Full Text] [Related]
10. A model for the relation between stimulus frequency and spontaneous otoacoustic emissions in lizard papillae. Wit HP; van Dijk P; Manley GA J Acoust Soc Am; 2012 Nov; 132(5):3273-9. PubMed ID: 23145611 [TBL] [Abstract][Full Text] [Related]
11. Filtering of distortion-product otoacoustic emissions in the inner ear of birds and lizards. Taschenberger G; Gallo L; Manley GA Hear Res; 1995 Nov; 91(1-2):87-92. PubMed ID: 8647729 [TBL] [Abstract][Full Text] [Related]
12. The influence of injected AC and DC currents on spontaneous otoacoustic emissions in the bobtail lizard. Manley GA; Kirk DL J Assoc Res Otolaryngol; 2002 Jun; 3(2):200-8. PubMed ID: 12162369 [TBL] [Abstract][Full Text] [Related]
13. Calcium modulates the frequency and amplitude of spontaneous otoacoustic emissions in the bobtail skink. Manley GA; Sienknecht U; Köppl C J Neurophysiol; 2004 Nov; 92(5):2685-93. PubMed ID: 15102898 [TBL] [Abstract][Full Text] [Related]
14. Spontaneous otoacoustic emissions in the bobtail lizard. II: Interactions with external tones. Köppl C; Manley GA Hear Res; 1994 Jan; 72(1-2):159-70. PubMed ID: 8150732 [TBL] [Abstract][Full Text] [Related]
15. Frequency Shifts in a Local Oscillator Model for the Generation of Spontaneous Otoacoustic Emissions by the Lizard Ear. Wit HP; Bell A Audiol Neurootol; 2023; 28(3):183-193. PubMed ID: 36626887 [TBL] [Abstract][Full Text] [Related]
16. The effects of air pressure on spontaneous otoacoustic emissions of lizards. van Dijk P; Manley GA J Assoc Res Otolaryngol; 2013 Jun; 14(3):309-19. PubMed ID: 23568746 [TBL] [Abstract][Full Text] [Related]
17. Micromechanics of the reptilian ear. Nielsen DW; Turner RG Audiology; 1983; 22(6):530-44. PubMed ID: 6667174 [TBL] [Abstract][Full Text] [Related]
18. Spontaneous otoacoustic emissions in two gecko species, Gekko gecko and Eublepharis macularius. Manley GA; Gallo L; Koppl C J Acoust Soc Am; 1996 Mar; 99(3):1588-603. PubMed ID: 8819855 [TBL] [Abstract][Full Text] [Related]
19. A micromechanical contribution to cochlear tuning and tonotopic organization. Holton T; Hudspeth AJ Science; 1983 Nov; 222(4623):508-10. PubMed ID: 6623089 [TBL] [Abstract][Full Text] [Related]
20. Interactions between hair cells shape spontaneous otoacoustic emissions in a model of the tokay gecko's cochlea. Gelfand M; Piro O; Magnasco MO; Hudspeth AJ PLoS One; 2010 Jun; 5(6):e11116. PubMed ID: 20559557 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]