BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

983 related articles for article (PubMed ID: 29551309)

  • 1. Mitochondrial β-oxidation of saturated fatty acids in humans.
    Adeva-Andany MM; Carneiro-Freire N; Seco-Filgueira M; Fernández-Fernández C; Mouriño-Bayolo D
    Mitochondrion; 2019 May; 46():73-90. PubMed ID: 29551309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitation of acyl-CoA and acylcarnitine esters accumulated during abnormal mitochondrial fatty acid oxidation.
    Kler RS; Jackson S; Bartlett K; Bindoff LA; Eaton S; Pourfarzam M; Frerman FE; Goodman SI; Watmough NJ; Turnbull DM
    J Biol Chem; 1991 Dec; 266(34):22932-8. PubMed ID: 1744086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial beta-oxidation of 2-methyl fatty acids in rat liver.
    Mao LF; Chu C; Luo MJ; Simon A; Abbas AS; Schulz H
    Arch Biochem Biophys; 1995 Aug; 321(1):221-8. PubMed ID: 7639525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significance of l-carnitine for human health.
    Adeva-Andany MM; Calvo-Castro I; Fernández-Fernández C; Donapetry-García C; Pedre-Piñeiro AM
    IUBMB Life; 2017 Aug; 69(8):578-594. PubMed ID: 28653367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Participation of peroxisomes in the metabolism of xenobiotic acyl compounds: comparison between peroxisomal and mitochondrial beta-oxidation of omega-phenyl fatty acids in rat liver.
    Yamada J; Ogawa S; Horie S; Watanabe T; Suga T
    Biochim Biophys Acta; 1987 Sep; 921(2):292-301. PubMed ID: 3651489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aspects of long-chain acyl-COA metabolism.
    Tol VA
    Mol Cell Biochem; 1975 Apr; 7(1):19-31. PubMed ID: 1134497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of metabolic fluxes of cis-5-enoyl-CoA and saturated acyl-CoA through the beta-oxidation pathway.
    Tserng KY; Chen LS; Jin SJ
    Biochem J; 1995 Apr; 307 ( Pt 1)(Pt 1):23-8. PubMed ID: 7717980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Effects of their coenzyme A esters on enzymes of fatty acid oxidation.
    Holland PC; Senior AE; Sherratt HS
    Biochem J; 1973 Sep; 136(1):173-84. PubMed ID: 4797895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Effects of the free acids and their carnitine esters on coenzyme A-dependent oxidations in rat liver mitochondria.
    Holland PC; Sherratt HS
    Biochem J; 1973 Sep; 136(1):157-71. PubMed ID: 4772622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of fatty acid beta-oxidation in rat heart mitochondria.
    Wang HY; Baxter CF; Schulz H
    Arch Biochem Biophys; 1991 Sep; 289(2):274-80. PubMed ID: 1898072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate specificity of human carnitine acetyltransferase: Implications for fatty acid and branched-chain amino acid metabolism.
    Violante S; Ijlst L; Ruiter J; Koster J; van Lenthe H; Duran M; de Almeida IT; Wanders RJ; Houten SM; Ventura FV
    Biochim Biophys Acta; 2013 Jun; 1832(6):773-9. PubMed ID: 23485643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-chain acyl-CoA ester intermediates of beta-oxidation of mono- and di-carboxylic fatty acids by extracts of Corynebacterium sp. strain 7E1C.
    Broadway NM; Dickinson FM; Ratledge C
    Biochem J; 1992 Jul; 285 ( Pt 1)(Pt 1):117-22. PubMed ID: 1637289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peroxisomal beta-oxidation of branched chain fatty acids in rat liver. Evidence that carnitine palmitoyltransferase I prevents transport of branched chain fatty acids into mitochondria.
    Singh H; Beckman K; Poulos A
    J Biol Chem; 1994 Apr; 269(13):9514-20. PubMed ID: 8144536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intramitochondrial control of the oxidation of hexadecanoate in skeletal muscle. A study of the acyl-CoA esters which accumulate during rat skeletal-muscle mitochondrial beta-oxidation of [U-14C]hexadecanoate and [U-14C]hexadecanoyl-carnitine.
    Eaton S; Bhuiyan AK; Kler RS; Turnbull DM; Bartlett K
    Biochem J; 1993 Jan; 289 ( Pt 1)(Pt 1):161-8. PubMed ID: 8424753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mouse models for disorders of mitochondrial fatty acid beta-oxidation.
    Schuler AM; Wood PA
    ILAR J; 2002; 43(2):57-65. PubMed ID: 11917157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of dietary alpha-linolenic acid on the activity and gene expression of hepatic fatty acid oxidation enzymes.
    Ide T
    Biofactors; 2000; 13(1-4):9-14. PubMed ID: 11237206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peroxisomal lipid degradation via beta- and alpha-oxidation in mammals.
    Mannaerts GP; Van Veldhoven PP; Casteels M
    Cell Biochem Biophys; 2000; 32 Spring():73-87. PubMed ID: 11330072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatty acid import into mitochondria.
    Kerner J; Hoppel C
    Biochim Biophys Acta; 2000 Jun; 1486(1):1-17. PubMed ID: 10856709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 5-Hydroxydecanoate is metabolised in mitochondria and creates a rate-limiting bottleneck for beta-oxidation of fatty acids.
    Hanley PJ; Dröse S; Brandt U; Lareau RA; Banerjee AL; Srivastava DK; Banaszak LJ; Barycki JJ; Van Veldhoven PP; Daut J
    J Physiol; 2005 Jan; 562(Pt 2):307-18. PubMed ID: 15513944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arrhythmias and conduction defects as presenting symptoms of fatty acid oxidation disorders in children.
    Bonnet D; Martin D; Pascale De Lonlay ; Villain E; Jouvet P; Rabier D; Brivet M; Saudubray JM
    Circulation; 1999 Nov; 100(22):2248-53. PubMed ID: 10577999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 50.