These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
927 related articles for article (PubMed ID: 29551514)
1. Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein. Yan WX; Chong S; Zhang H; Makarova KS; Koonin EV; Cheng DR; Scott DA Mol Cell; 2018 Apr; 70(2):327-339.e5. PubMed ID: 29551514 [TBL] [Abstract][Full Text] [Related]
2. Two HEPN domains dictate CRISPR RNA maturation and target cleavage in Cas13d. Zhang B; Ye Y; Ye W; Perčulija V; Jiang H; Chen Y; Li Y; Chen J; Lin J; Wang S; Chen Q; Han YS; Ouyang S Nat Commun; 2019 Jun; 10(1):2544. PubMed ID: 31186424 [TBL] [Abstract][Full Text] [Related]
3. Structural insights into the modulatory role of the accessory protein WYL1 in the Type VI-D CRISPR-Cas system. Zhang H; Dong C; Li L; Wasney GA; Min J Nucleic Acids Res; 2019 Jun; 47(10):5420-5428. PubMed ID: 30976796 [TBL] [Abstract][Full Text] [Related]
4. Sensitive analysis of single nucleotide variation by Cas13d orthologs, EsCas13d and RspCas13d. Qiao X; Gao Y; Li J; Wang Z; Qiao H; Qi H Biotechnol Bioeng; 2021 Aug; 118(8):3037-3045. PubMed ID: 33964175 [TBL] [Abstract][Full Text] [Related]
5. Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a. Swarts DC; van der Oost J; Jinek M Mol Cell; 2017 Apr; 66(2):221-233.e4. PubMed ID: 28431230 [TBL] [Abstract][Full Text] [Related]
6. Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28. Smargon AA; Cox DBT; Pyzocha NK; Zheng K; Slaymaker IM; Gootenberg JS; Abudayyeh OA; Essletzbichler P; Shmakov S; Makarova KS; Koonin EV; Zhang F Mol Cell; 2017 Feb; 65(4):618-630.e7. PubMed ID: 28065598 [TBL] [Abstract][Full Text] [Related]
8. Molecular Mechanisms of RNA Targeting by Cas13-containing Type VI CRISPR-Cas Systems. O'Connell MR J Mol Biol; 2019 Jan; 431(1):66-87. PubMed ID: 29940185 [TBL] [Abstract][Full Text] [Related]
9. Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9. Yang H; Patel DJ Mol Cell; 2017 Jul; 67(1):117-127.e5. PubMed ID: 28602637 [TBL] [Abstract][Full Text] [Related]
10. C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism. Liu L; Chen P; Wang M; Li X; Wang J; Yin M; Wang Y Mol Cell; 2017 Jan; 65(2):310-322. PubMed ID: 27989439 [TBL] [Abstract][Full Text] [Related]
11. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Fonfara I; Richter H; Bratovič M; Le Rhun A; Charpentier E Nature; 2016 Apr; 532(7600):517-21. PubMed ID: 27096362 [TBL] [Abstract][Full Text] [Related]
12. The crystal structure of Cpf1 in complex with CRISPR RNA. Dong D; Ren K; Qiu X; Zheng J; Guo M; Guan X; Liu H; Li N; Zhang B; Yang D; Ma C; Wang S; Wu D; Ma Y; Fan S; Wang J; Gao N; Huang Z Nature; 2016 Apr; 532(7600):522-6. PubMed ID: 27096363 [TBL] [Abstract][Full Text] [Related]
13. Structure Reveals a Mechanism of CRISPR-RNA-Guided Nuclease Recruitment and Anti-CRISPR Viral Mimicry. Rollins MF; Chowdhury S; Carter J; Golden SM; Miettinen HM; Santiago-Frangos A; Faith D; Lawrence CM; Lander GC; Wiedenheft B Mol Cell; 2019 Apr; 74(1):132-142.e5. PubMed ID: 30872121 [TBL] [Abstract][Full Text] [Related]
14. Structural basis for self-cleavage prevention by tag:anti-tag pairing complementarity in type VI Cas13 CRISPR systems. Wang B; Zhang T; Yin J; Yu Y; Xu W; Ding J; Patel DJ; Yang H Mol Cell; 2021 Mar; 81(5):1100-1115.e5. PubMed ID: 33472057 [TBL] [Abstract][Full Text] [Related]
15. Structural Basis for the Canonical and Non-canonical PAM Recognition by CRISPR-Cpf1. Yamano T; Zetsche B; Ishitani R; Zhang F; Nishimasu H; Nureki O Mol Cell; 2017 Aug; 67(4):633-645.e3. PubMed ID: 28781234 [TBL] [Abstract][Full Text] [Related]
16. Structural Variation of Type I-F CRISPR RNA Guided DNA Surveillance. Pausch P; Müller-Esparza H; Gleditzsch D; Altegoer F; Randau L; Bange G Mol Cell; 2017 Aug; 67(4):622-632.e4. PubMed ID: 28781236 [TBL] [Abstract][Full Text] [Related]
17. The Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas Toolkit. Murugan K; Babu K; Sundaresan R; Rajan R; Sashital DG Mol Cell; 2017 Oct; 68(1):15-25. PubMed ID: 28985502 [TBL] [Abstract][Full Text] [Related]
18. Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems. Zhang Y; Ren Q; Tang X; Liu S; Malzahn AA; Zhou J; Wang J; Yin D; Pan C; Yuan M; Huang L; Yang H; Zhao Y; Fang Q; Zheng X; Tian L; Cheng Y; Le Y; McCoy B; Franklin L; Selengut JD; Mount SM; Que Q; Zhang Y; Qi Y Nat Commun; 2021 Mar; 12(1):1944. PubMed ID: 33782402 [TBL] [Abstract][Full Text] [Related]
19. ErCas12a CRISPR-MAD7 for Model Generation in Human Cells, Mice, and Rats. Liu Z; Schiel JA; Maksimova E; Strezoska Ž; Zhao G; Anderson EM; Wu Y; Warren J; Bartels A; van Brabant Smith A; Lowe CE; Forbes KP CRISPR J; 2020 Apr; 3(2):97-108. PubMed ID: 32315227 [TBL] [Abstract][Full Text] [Related]
20. A scoutRNA Is Required for Some Type V CRISPR-Cas Systems. Harrington LB; Ma E; Chen JS; Witte IP; Gertz D; Paez-Espino D; Al-Shayeb B; Kyrpides NC; Burstein D; Banfield JF; Doudna JA Mol Cell; 2020 Aug; 79(3):416-424.e5. PubMed ID: 32645367 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]