BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 29551750)

  • 1. Effects of FKBP12 and type II BMP receptors on signal transduction by ALK2 activating mutations associated with genetic disorders.
    Machiya A; Tsukamoto S; Ohte S; Kuratani M; Fujimoto M; Kumagai K; Osawa K; Suda N; Bullock AN; Katagiri T
    Bone; 2018 Jun; 111():101-108. PubMed ID: 29551750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ALK2 R206H mutation linked to fibrodysplasia ossificans progressiva confers constitutive activity to the BMP type I receptor and sensitizes mesenchymal cells to BMP-induced osteoblast differentiation and bone formation.
    van Dinther M; Visser N; de Gorter DJ; Doorn J; Goumans MJ; de Boer J; ten Dijke P
    J Bone Miner Res; 2010 Jun; 25(6):1208-15. PubMed ID: 19929436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutant activin-like kinase 2 in fibrodysplasia ossificans progressiva are activated via T203 by BMP type II receptors.
    Fujimoto M; Ohte S; Osawa K; Miyamoto A; Tsukamoto S; Mizuta T; Kokabu S; Suda N; Katagiri T
    Mol Endocrinol; 2015 Jan; 29(1):140-52. PubMed ID: 25354296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alk2 regulates early chondrogenic fate in fibrodysplasia ossificans progressiva heterotopic endochondral ossification.
    Culbert AL; Chakkalakal SA; Theosmy EG; Brennan TA; Kaplan FS; Shore EM
    Stem Cells; 2014 May; 32(5):1289-300. PubMed ID: 24449086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insight into Molecular Mechanism for Activin A-Induced Bone Morphogenetic Protein Signaling.
    Xie C; Jiang W; Lacroix JJ; Luo Y; Hao J
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32899497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment of a novel model of chondrogenesis using murine embryonic stem cells carrying fibrodysplasia ossificans progressiva-associated mutant ALK2.
    Fujimoto M; Ohte S; Shin M; Yoneyama K; Osawa K; Miyamoto A; Tsukamoto S; Mizuta T; Kokabu S; Machiya A; Okuda A; Suda N; Katagiri T
    Biochem Biophys Res Commun; 2014 Dec; 455(3-4):347-52. PubMed ID: 25446088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ALK2: A Therapeutic Target for Fibrodysplasia Ossificans Progressiva and Diffuse Intrinsic Pontine Glioma.
    Sekimata K; Sato T; Sakai N
    Chem Pharm Bull (Tokyo); 2020; 68(3):194-200. PubMed ID: 32115526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Common mutations in ALK2/ACVR1, a multi-faceted receptor, have roles in distinct pediatric musculoskeletal and neural orphan disorders.
    Pacifici M; Shore EM
    Cytokine Growth Factor Rev; 2016 Feb; 27():93-104. PubMed ID: 26776312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel mutation of ALK2, L196P, found in the most benign case of fibrodysplasia ossificans progressiva activates BMP-specific intracellular signaling equivalent to a typical mutation, R206H.
    Ohte S; Shin M; Sasanuma H; Yoneyama K; Akita M; Ikebuchi K; Jimi E; Maruki Y; Matsuoka M; Namba A; Tomoda H; Okazaki Y; Ohtake A; Oda H; Owan I; Yoda T; Furuya H; Kamizono J; Kitoh H; Nakashima Y; Susami T; Haga N; Komori T; Katagiri T
    Biochem Biophys Res Commun; 2011 Apr; 407(1):213-8. PubMed ID: 21377447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterotopic bone induction via BMP signaling: Potential therapeutic targets for fibrodysplasia ossificans progressiva.
    Katagiri T; Tsukamoto S; Kuratani M
    Bone; 2018 Apr; 109():241-250. PubMed ID: 28754575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the bone morphogenetic protein receptor ALK2 and implications for fibrodysplasia ossificans progressiva.
    Chaikuad A; Alfano I; Kerr G; Sanvitale CE; Boergermann JH; Triffitt JT; von Delft F; Knapp S; Knaus P; Bullock AN
    J Biol Chem; 2012 Oct; 287(44):36990-8. PubMed ID: 22977237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deregulated bone morphogenetic protein receptor signaling underlies fibrodysplasia ossificans progressiva.
    de Gorter DJ; Jankipersadsing V; Ten Dijke P
    Curr Pharm Des; 2012; 18(27):4087-92. PubMed ID: 22630080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constitutively active ALK2 receptor mutants require type II receptor cooperation.
    Bagarova J; Vonner AJ; Armstrong KA; Börgermann J; Lai CS; Deng DY; Beppu H; Alfano I; Filippakopoulos P; Morrell NW; Bullock AN; Knaus P; Mishina Y; Yu PB
    Mol Cell Biol; 2013 Jun; 33(12):2413-24. PubMed ID: 23572558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shared ACVR1 mutations in FOP and DIPG: Opportunities and challenges in extending biological and clinical implications across rare diseases.
    Han HJ; Jain P; Resnick AC
    Bone; 2018 Apr; 109():91-100. PubMed ID: 28780023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ACVR1 Function in Health and Disease.
    Valer JA; Sánchez-de-Diego C; Pimenta-Lopes C; Rosa JL; Ventura F
    Cells; 2019 Oct; 8(11):. PubMed ID: 31683698
    [No Abstract]   [Full Text] [Related]  

  • 16. The role of Activin A in fibrodysplasia ossificans progressiva: a prominent mediator.
    Lin H; Shi F; Gao J; Hua P
    Biosci Rep; 2019 Aug; 39(8):. PubMed ID: 31341010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of New Therapeutic Agents for Fibrodysplasia Ossificans Progressiva.
    Luo Y; Alsamarah A; Zhang K; Hao J
    Curr Mol Med; 2016; 16(1):4-11. PubMed ID: 26695699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induced Pluripotent Stem Cells to Model Human Fibrodysplasia Ossificans Progressiva.
    Cai J; Orlova VV; Cai X; Eekhoff EMW; Zhang K; Pei D; Pan G; Mummery CL; Ten Dijke P
    Stem Cell Reports; 2015 Dec; 5(6):963-970. PubMed ID: 26626181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ACVR1 mutations in DIPG: lessons learned from FOP.
    Taylor KR; Vinci M; Bullock AN; Jones C
    Cancer Res; 2014 Sep; 74(17):4565-70. PubMed ID: 25136070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fibrodysplasia ossificans progressiva-related activated activin-like kinase signaling enhances osteoclast formation during heterotopic ossification in muscle tissues.
    Yano M; Kawao N; Okumoto K; Tamura Y; Okada K; Kaji H
    J Biol Chem; 2014 Jun; 289(24):16966-77. PubMed ID: 24798338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.