These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 29551962)

  • 1. Learning to Recognize Actions From Limited Training Examples Using a Recurrent Spiking Neural Model.
    Panda P; Srinivasa N
    Front Neurosci; 2018; 12():126. PubMed ID: 29551962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition.
    Kasabov N; Dhoble K; Nuntalid N; Indiveri G
    Neural Netw; 2013 May; 41():188-201. PubMed ID: 23340243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneous recurrent spiking neural network for spatio-temporal classification.
    Chakraborty B; Mukhopadhyay S
    Front Neurosci; 2023; 17():994517. PubMed ID: 36793542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Highly Effective and Robust Membrane Potential-Driven Supervised Learning Method for Spiking Neurons.
    Zhang M; Qu H; Belatreche A; Chen Y; Yi Z
    IEEE Trans Neural Netw Learn Syst; 2019 Jan; 30(1):123-137. PubMed ID: 29993588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3-D Deconvolutional Networks for the Unsupervised Representation Learning of Human Motions.
    Zhang CY; Xiao YY; Lin JC; Chen CLP; Liu W; Tong YH
    IEEE Trans Cybern; 2022 Jan; 52(1):398-410. PubMed ID: 32149670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boost event-driven tactile learning with location spiking neurons.
    Kang P; Banerjee S; Chopp H; Katsaggelos A; Cossairt O
    Front Neurosci; 2023; 17():1127537. PubMed ID: 37152590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An unsupervised STDP-based spiking neural network inspired by biologically plausible learning rules and connections.
    Dong Y; Zhao D; Li Y; Zeng Y
    Neural Netw; 2023 Aug; 165():799-808. PubMed ID: 37418862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biologically plausible supervised learning method for spiking neural networks using the symmetric STDP rule.
    Hao Y; Huang X; Dong M; Xu B
    Neural Netw; 2020 Jan; 121():387-395. PubMed ID: 31593843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Spatiotemporal Pattern Recognition With Recurrent Spiking Neural Network.
    Shen J; Liu JK; Wang Y
    Neural Comput; 2021 Oct; 33(11):2971-2995. PubMed ID: 34474470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lifelong learning of human actions with deep neural network self-organization.
    Parisi GI; Tani J; Weber C; Wermter S
    Neural Netw; 2017 Dec; 96():137-149. PubMed ID: 29017140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic dynamics: linear model and adaptation algorithm.
    Yousefi A; Dibazar AA; Berger TW
    Neural Netw; 2014 Aug; 56():49-68. PubMed ID: 24867390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning to Generate Sequences with Combination of Hebbian and Non-hebbian Plasticity in Recurrent Spiking Neural Networks.
    Panda P; Roy K
    Front Neurosci; 2017; 11():693. PubMed ID: 29311774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A New Spiking Convolutional Recurrent Neural Network (SCRNN) With Applications to Event-Based Hand Gesture Recognition.
    Xing Y; Di Caterina G; Soraghan J
    Front Neurosci; 2020; 14():590164. PubMed ID: 33324153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sparse Temporal Encoding of Visual Features for Robust Object Recognition by Spiking Neurons.
    Zheng Y; Li S; Yan R; Tang H; Tan KC
    IEEE Trans Neural Netw Learn Syst; 2018 Dec; 29(12):5823-5833. PubMed ID: 29994102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constrain Bias Addition to Train Low-Latency Spiking Neural Networks.
    Lin R; Dai B; Zhao Y; Chen G; Lu H
    Brain Sci; 2023 Feb; 13(2):. PubMed ID: 36831862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A bio-inspired hierarchical spiking neural network with biological synaptic plasticity for event camera object recognition].
    Zhou Q; Zheng P; Li X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2023 Aug; 40(4):692-699. PubMed ID: 37666759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Liquid State Machines With Neural Plasticity for Video Activity Recognition.
    Soures N; Kudithipudi D
    Front Neurosci; 2019; 13():686. PubMed ID: 31333404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supervised Learning in Multilayer Spiking Neural Networks With Spike Temporal Error Backpropagation.
    Luo X; Qu H; Wang Y; Yi Z; Zhang J; Zhang M
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; 34(12):10141-10153. PubMed ID: 35436200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semi-supervised learning with progressive unlabeled data excavation for label-efficient surgical workflow recognition.
    Shi X; Jin Y; Dou Q; Heng PA
    Med Image Anal; 2021 Oct; 73():102158. PubMed ID: 34325149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal Coding in Spiking Neural Networks With Alpha Synaptic Function: Learning With Backpropagation.
    Comsa IM; Potempa K; Versari L; Fischbacher T; Gesmundo A; Alakuijala J
    IEEE Trans Neural Netw Learn Syst; 2022 Oct; 33(10):5939-5952. PubMed ID: 33900924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.