These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 29551963)

  • 1. Cannabinoid Receptors Modulate Excitation of an Olfactory Bulb Local Circuit by Cortical Feedback.
    Pouille F; Schoppa NE
    Front Cell Neurosci; 2018; 12():47. PubMed ID: 29551963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CCKergic Tufted Cells Differentially Drive Two Anatomically Segregated Inhibitory Circuits in the Mouse Olfactory Bulb.
    Sun X; Liu X; Starr ER; Liu S
    J Neurosci; 2020 Aug; 40(32):6189-6206. PubMed ID: 32605937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Olfactory Bulb Deep Short-Axon Cells Mediate Widespread Inhibition of Tufted Cell Apical Dendrites.
    Burton SD; LaRocca G; Liu A; Cheetham CE; Urban NN
    J Neurosci; 2017 Feb; 37(5):1117-1138. PubMed ID: 28003347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short-Term Plasticity in Cortical GABAergic Synapses on Olfactory Bulb Granule Cells Is Modulated by Endocannabinoids.
    Zhou FW; Puche AC
    Front Cell Neurosci; 2021; 15():629052. PubMed ID: 33633545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid Feedforward Inhibition and Asynchronous Excitation Regulate Granule Cell Activity in the Mammalian Main Olfactory Bulb.
    Burton SD; Urban NN
    J Neurosci; 2015 Oct; 35(42):14103-22. PubMed ID: 26490853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GABAB Receptors Tune Cortical Feedback to the Olfactory Bulb.
    Mazo C; Lepousez G; Nissant A; Valley MT; Lledo PM
    J Neurosci; 2016 Aug; 36(32):8289-304. PubMed ID: 27511004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complementary postsynaptic activity patterns elicited in olfactory bulb by stimulation of mitral/tufted and centrifugal fiber inputs to granule cells.
    Laaris N; Puche A; Ennis M
    J Neurophysiol; 2007 Jan; 97(1):296-306. PubMed ID: 17035366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in Glomerular-Layer-Mediated Feedforward Inhibition onto Mitral and Tufted Cells Lead to Distinct Modes of Intensity Coding.
    Geramita M; Urban NN
    J Neurosci; 2017 Feb; 37(6):1428-1438. PubMed ID: 28028200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabotropic glutamate receptors in the main olfactory bulb drive granule cell-mediated inhibition.
    Heinbockel T; Laaris N; Ennis M
    J Neurophysiol; 2007 Jan; 97(1):858-70. PubMed ID: 17093122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular and Synaptic Mechanisms That Differentiate Mitral Cells and Superficial Tufted Cells Into Parallel Output Channels in the Olfactory Bulb.
    Jones S; Zylberberg J; Schoppa N
    Front Cell Neurosci; 2020; 14():614377. PubMed ID: 33414707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of olfactory bulb network activity by serotonin: synchronous inhibition of mitral cells mediated by spatially localized GABAergic microcircuits.
    Schmidt LJ; Strowbridge BW
    Learn Mem; 2014 Aug; 21(8):406-16. PubMed ID: 25031366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct deep short-axon cell subtypes of the main olfactory bulb provide novel intrabulbar and extrabulbar GABAergic connections.
    Eyre MD; Antal M; Nusser Z
    J Neurosci; 2008 Aug; 28(33):8217-29. PubMed ID: 18701684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraglomerular gap junctions enhance interglomerular synchrony in a sparsely connected olfactory bulb network.
    Pouille F; McTavish TS; Hunter LE; Restrepo D; Schoppa NE
    J Physiol; 2017 Sep; 595(17):5965-5986. PubMed ID: 28640508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tonic and synaptically evoked presynaptic inhibition of sensory input to the rat olfactory bulb via GABA(B) heteroreceptors.
    Aroniadou-Anderjaska V; Zhou FM; Priest CA; Ennis M; Shipley MT
    J Neurophysiol; 2000 Sep; 84(3):1194-203. PubMed ID: 10979995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-Term Plasticity at Olfactory Cortex to Granule Cell Synapses Requires Ca
    Zhou FW; Puche AC; Shipley MT
    Front Cell Neurosci; 2018; 12():387. PubMed ID: 30416429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular diversity of deep short-axon cells of the rat main olfactory bulb.
    Eyre MD; Kerti K; Nusser Z
    Eur J Neurosci; 2009 Apr; 29(7):1397-407. PubMed ID: 19344330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cannabinoid receptor-mediated modulation of inhibitory inputs to mitral cells in the main olfactory bulb.
    Wang ZJ; Hu SS; Bradshaw HB; Sun L; Mackie K; Straiker A; Heinbockel T
    J Neurophysiol; 2019 Aug; 122(2):749-759. PubMed ID: 31215302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholecystokinin selectively activates short axon cells to enhance inhibition of olfactory bulb output neurons.
    Liu X; Liu S
    J Physiol; 2018 Jun; 596(11):2185-2207. PubMed ID: 29572837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GABAA and glutamate receptor involvement in dendrodendritic synaptic interactions from salamander olfactory bulb.
    Wellis DP; Kauer JS
    J Physiol; 1993 Sep; 469():315-39. PubMed ID: 7903696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. α
    Huang GZ; Taniguchi M; Zhou YB; Zhang JJ; Okutani F; Murata Y; Yamaguchi M; Kaba H
    Learn Mem; 2018 Apr; 25(4):147-157. PubMed ID: 29545386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.