BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

767 related articles for article (PubMed ID: 29552012)

  • 1. Targeting Myeloid-Derived Suppressor Cells to Bypass Tumor-Induced Immunosuppression.
    Fleming V; Hu X; Weber R; Nagibin V; Groth C; Altevogt P; Utikal J; Umansky V
    Front Immunol; 2018; 9():398. PubMed ID: 29552012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural Killer Cell Interactions With Myeloid Derived Suppressor Cells in the Tumor Microenvironment and Implications for Cancer Immunotherapy.
    Zalfa C; Paust S
    Front Immunol; 2021; 12():633205. PubMed ID: 34025641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Therapeutic Approaches Targeting the Natural Killer-Myeloid Cell Axis in the Tumor Microenvironment.
    Carnevalli LS; Ghadially H; Barry ST
    Front Immunol; 2021; 12():633685. PubMed ID: 33953710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting myeloid-derived suppressor cells for cancer immunotherapy.
    Liu Y; Wei G; Cheng WA; Dong Z; Sun H; Lee VY; Cha SC; Smith DL; Kwak LW; Qin H
    Cancer Immunol Immunother; 2018 Aug; 67(8):1181-1195. PubMed ID: 29855694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural Killer Cells Reprogram Myeloid-Derived Suppressor Cells to Induce TNF-α Release via NKG2D-Ligand Interaction after Cryo-Thermal Therapy.
    You J; Wang S; Zhu Y; Zhang Z; Wang J; Lou Y; Yao Y; Hao Y; Liu P
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives.
    Lin H; Liu C; Hu A; Zhang D; Yang H; Mao Y
    J Hematol Oncol; 2024 May; 17(1):31. PubMed ID: 38720342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional assay to assess T-cell inhibitory properties of myeloid derived suppressor cells (MDSCs) isolated from the tumor microenvironment of murine glioma models.
    Alghamri MS; Kamran N; Kadiyala P; Lowenstein PR; Castro MG
    Methods Enzymol; 2020; 632():215-228. PubMed ID: 32000897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immune suppression: the hallmark of myeloid derived suppressor cells.
    Haile LA; Greten TF; Korangy F
    Immunol Invest; 2012; 41(6-7):581-94. PubMed ID: 23017136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Common extracellular matrix regulation of myeloid cell activity in the bone marrow and tumor microenvironments.
    Sangaletti S; Chiodoni C; Tripodo C; Colombo MP
    Cancer Immunol Immunother; 2017 Aug; 66(8):1059-1067. PubMed ID: 28501940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting Tumor Metabolism: A New Challenge to Improve Immunotherapy.
    Kouidhi S; Ben Ayed F; Benammar Elgaaied A
    Front Immunol; 2018; 9():353. PubMed ID: 29527212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vascular Microenvironment, Tumor Immunity and Immunotherapy.
    Lamplugh Z; Fan Y
    Front Immunol; 2021; 12():811485. PubMed ID: 34987525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanomedicine Targeting Myeloid-Derived Suppressor Cells Enhances Anti-Tumor Immunity.
    Yang EL; Sun ZJ
    Adv Healthc Mater; 2024 Apr; 13(9):e2303294. PubMed ID: 38288864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How to measure the immunosuppressive activity of MDSC: assays, problems and potential solutions.
    Bruger AM; Dorhoi A; Esendagli G; Barczyk-Kahlert K; van der Bruggen P; Lipoldova M; Perecko T; Santibanez J; Saraiva M; Van Ginderachter JA; Brandau S
    Cancer Immunol Immunother; 2019 Apr; 68(4):631-644. PubMed ID: 29785656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neutrophil: A New Player in Metastatic Cancers.
    Wu M; Ma M; Tan Z; Zheng H; Liu X
    Front Immunol; 2020; 11():565165. PubMed ID: 33101283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential therapeutic targets in myeloid cell therapy for overcoming chemoresistance and immune suppression in gastrointestinal tumors.
    Fan J; Zhu J; Zhu H; Xu H
    Crit Rev Oncol Hematol; 2024 Jun; 198():104362. PubMed ID: 38614267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Turn Back the TIMe: Targeting Tumor Infiltrating Myeloid Cells to Revert Cancer Progression.
    Awad RM; De Vlaeminck Y; Maebe J; Goyvaerts C; Breckpot K
    Front Immunol; 2018; 9():1977. PubMed ID: 30233579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor-associated myeloid cells as guiding forces of cancer cell stemness.
    Sica A; Porta C; Amadori A; Pastò A
    Cancer Immunol Immunother; 2017 Aug; 66(8):1025-1036. PubMed ID: 28401258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myeloid-derived suppressor cells as intruders and targets: clinical implications in cancer therapy.
    Baniyash M
    Cancer Immunol Immunother; 2016 Jul; 65(7):857-67. PubMed ID: 27225641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNAs and lncRNAs-A New Layer of Myeloid-Derived Suppressor Cells Regulation.
    Safarzadeh E; Asadzadeh Z; Safaei S; Hatefi A; Derakhshani A; Giovannelli F; Brunetti O; Silvestris N; Baradaran B
    Front Immunol; 2020; 11():572323. PubMed ID: 33133086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenotype, function and clinical implications of myeloid-derived suppressor cells in cancer patients.
    Filipazzi P; Huber V; Rivoltini L
    Cancer Immunol Immunother; 2012 Feb; 61(2):255-263. PubMed ID: 22120756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.