BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 29552205)

  • 1. Knockdown of spindle pole body component 25 homolog inhibits cell proliferation and cycle progression in prostate cancer.
    Cui F; Hu J; Fan Y; Tan J; Tang H
    Oncol Lett; 2018 Apr; 15(4):5712-5720. PubMed ID: 29552205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spindle pole body component 25 in the androgen-induced regression of castration-resistant prostate cancer.
    Cui F; Ning S; Xu Z; Hu J
    Transl Androl Urol; 2022 Apr; 11(4):519-527. PubMed ID: 35558271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spindle pole body component 25 regulates stemness of prostate cancer cells.
    Cui F; Tang H; Tan J; Hu J
    Aging (Albany NY); 2018 Nov; 10(11):3273-3282. PubMed ID: 30408771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SPC25 upregulation increases cancer stem cell properties in non-small cell lung adenocarcinoma cells and independently predicts poor survival.
    Chen J; Chen H; Yang H; Dai H
    Biomed Pharmacother; 2018 Apr; 100():233-239. PubMed ID: 29432994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spindle pole body component 25 homolog expressed by ECM stiffening is required for lung cancer cell proliferation.
    Jeong J; Keum S; Kim D; You E; Ko P; Lee J; Kim J; Kim JW; Rhee S
    Biochem Biophys Res Commun; 2018 Jun; 500(4):937-943. PubMed ID: 29709477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SPC25 Functions as a Prognostic-Related Biomarker, and Its High Expression Correlates with Tumor Immune Infiltration and UCEC Progression.
    Liao LX; Zhang M; Xu X; Zhang S; Guo YZ
    Front Biosci (Landmark Ed); 2024 Feb; 29(2):69. PubMed ID: 38420826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spindle pole body component 25 and platelet-derived growth factor mediate crosstalk between tumor-associated macrophages and prostate cancer cells.
    Cui F; Xu Z; Hu J; Lv Y
    Front Immunol; 2022; 13():907636. PubMed ID: 35967419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of spindle pole body component 25 in neurodegeneration.
    Cui F; Xu Z; Lv Y; Hu J
    Ann Transl Med; 2021 Sep; 9(18):1432. PubMed ID: 34733984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The synergistic effect of
    Deng N; Chen K; Fan H; Jin F
    Ann Transl Med; 2022 Jul; 10(14):783. PubMed ID: 35965791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of AR-regulated lncRNA TMPO-AS1 correlates with tumor progression and poor prognosis in prostate cancer.
    Huang W; Su X; Yan W; Kong Z; Wang D; Huang Y; Zhai Q; Zhang X; Wu H; Li Y; Li T; Wan X
    Prostate; 2018 Dec; 78(16):1248-1261. PubMed ID: 30105831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mitotic regulator Hec1 is a critical modulator of prostate cancer through the long non-coding RNA BX647187 in vitro.
    Wang H; Gao X; Lu X; Wang Y; Ma C; Shi Z; Zhu F; He B; Xu C; Sun Y
    Biosci Rep; 2015; 35(6):. PubMed ID: 26612002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knockdown of the long noncoding RNA HOTTIP inhibits cell proliferation and enhances cell sensitivity to cisplatin by suppressing the Wnt/β-catenin pathway in prostate cancer.
    Jiang H; Xiong W; Chen L; Lv Z; Yang C; Li Y
    J Cell Biochem; 2019 Jun; 120(6):8965-8974. PubMed ID: 30809864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Up-regulation of SPC25 promotes breast cancer.
    Wang Q; Zhu Y; Li Z; Bu Q; Sun T; Wang H; Sun H; Cao X
    Aging (Albany NY); 2019 Aug; 11(15):5689-5704. PubMed ID: 31400751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long non-coding RNA CCAT2 promotes prostate cancer cell proliferation and invasion by regulating the Wnt/β-catenin signaling pathway.
    He P; Xiong G; Guo W; Jiang G; Li Y; Li H
    Oncol Lett; 2020 Oct; 20(4):97. PubMed ID: 32831916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. siRNA-mediated knockdown against CDCA1 and KNTC2, both frequently overexpressed in colorectal and gastric cancers, suppresses cell proliferation and induces apoptosis.
    Kaneko N; Miura K; Gu Z; Karasawa H; Ohnuma S; Sasaki H; Tsukamoto N; Yokoyama S; Yamamura A; Nagase H; Shibata C; Sasaki I; Horii A
    Biochem Biophys Res Commun; 2009 Dec; 390(4):1235-40. PubMed ID: 19878654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CDCA2 Inhibits Apoptosis and Promotes Cell Proliferation in Prostate Cancer and Is Directly Regulated by HIF-1α Pathway.
    Zhang Y; Cheng Y; Zhang Z; Bai Z; Jin H; Guo X; Huang X; Li M; Wang M; Shu XS; Yuan Y; Ying Y
    Front Oncol; 2020; 10():725. PubMed ID: 32509575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the Potential Prognostic and Immunological Role of TK1 in Prostate Cancer.
    Xie H; Guo L; Wang Z; Peng S; Ma Q; Yang Z; Shang Z; Niu Y
    Front Genet; 2022; 13():778850. PubMed ID: 35559045
    [No Abstract]   [Full Text] [Related]  

  • 18. MicroRNA‑512‑3p is upregulated, and promotes proliferation and cell cycle progression, in prostate cancer cells.
    Rao Z; He Z; He Y; Guo Z; Kong D; Liu J
    Mol Med Rep; 2018 Jan; 17(1):586-593. PubMed ID: 29115469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential therapeutic targets of the nuclear division cycle 80 (NDC80) complexes genes in lung adenocarcinoma.
    Sun ZY; Wang W; Gao H; Chen QF
    J Cancer; 2020; 11(10):2921-2934. PubMed ID: 32226507
    [No Abstract]   [Full Text] [Related]  

  • 20. A Combined Systemic Strategy for Overcoming Cisplatin Resistance in Head and Neck Cancer: From Target Identification to Drug Discovery.
    Chen YJ; You GR; Lai MY; Lu LS; Chen CY; Ting LL; Lee HL; Kanno Y; Chiou JF; Cheng AJ
    Cancers (Basel); 2020 Nov; 12(11):. PubMed ID: 33238517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.