These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 29552397)

  • 1. Plasmonic nanoparticle-based expansion microscopy with surface-enhanced Raman and dark-field spectroscopic imaging.
    Artur CG; Womack T; Zhao F; Eriksen JL; Mayerich D; Shih WC
    Biomed Opt Express; 2018 Feb; 9(2):603-615. PubMed ID: 29552397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmon-Enhanced Expansion Microscopy.
    Rathi P; Gupta P; Debnath A; Baldi H; Wang Y; Gupta R; Raman B; Singamaneni S
    Nano Lett; 2023 Jun; 23(12):5654-5662. PubMed ID: 37307329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Nanoparticle-Enhanced Optical Techniques for Cancer Biomarker Sensing.
    Fu L; Lin CT; Karimi-Maleh H; Chen F; Zhao S
    Biosensors (Basel); 2023 Nov; 13(11):. PubMed ID: 37998152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effect of Nanoparticle Composition on the Surface-Enhanced Raman Scattering Performance of Plasmonic DNA Origami Nanoantennas.
    Kanehira Y; Tapio K; Wegner G; Kogikoski S; Rüstig S; Prietzel C; Busch K; Bald I
    ACS Nano; 2023 Nov; 17(21):21227-21239. PubMed ID: 37847540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multivariate Imaging for Fast Evaluation of In Situ Dark Field Microscopy Hyperspectral Data.
    Diehn S; Schlaad H; Kneipp J
    Molecules; 2022 Aug; 27(16):. PubMed ID: 36014387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of SERS labeling of CD20 on CLL cells using optical microscopy and fluorescence flow cytometry.
    MacLaughlin CM; Parker EP; Walker GC; Wang C
    Nanomedicine; 2013 Jan; 9(1):55-64. PubMed ID: 22542823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational design of Raman-labeled nanoparticles for a dual-modality, light scattering immunoassay on a polystyrene substrate.
    Israelsen ND; Wooley D; Hanson C; Vargis E
    J Biol Eng; 2016; 10():2. PubMed ID: 26751120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward Quantitative Surface-Enhanced Raman Scattering with Plasmonic Nanoparticles: Multiscale View on Heterogeneities in Particle Morphology, Surface Modification, Interface, and Analytical Protocols.
    Son J; Kim GH; Lee Y; Lee C; Cha S; Nam JM
    J Am Chem Soc; 2022 Dec; 144(49):22337-22351. PubMed ID: 36473154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticles for live cell microscopy: A surface-enhanced Raman scattering perspective.
    Navas-Moreno M; Mehrpouyan M; Chernenko T; Candas D; Fan M; Li JJ; Yan M; Chan JW
    Sci Rep; 2017 Jun; 7(1):4471. PubMed ID: 28667313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Geometry of Nanoparticle-on-Mirror Plasmonic Nanocavities Impacts Surface-Enhanced Raman Scattering Backgrounds.
    Wang Z; Zhou W; Yang M; Yang Y; Hu J; Qin C; Zhang G; Liu S; Chen R; Xiao L
    Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Templated green synthesis of plasmonic silver nanoparticles in onion epidermal cells suitable for surface-enhanced Raman and hyper-Raman scattering.
    Espina Palanco M; Bo Mogensen K; Gühlke M; Heiner Z; Kneipp J; Kneipp K
    Beilstein J Nanotechnol; 2016; 7():834-40. PubMed ID: 27547600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanding the Multiplexing Capabilities of Raman Imaging to Reveal Highly Specific Molecular Expression and Enable Spatial Profiling.
    Eremina OE; Czaja AT; Fernando A; Aron A; Eremin DB; Zavaleta C
    ACS Nano; 2022 Jul; 16(7):10341-10353. PubMed ID: 35675533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-Enhanced Raman Spectroscopy Substrates: Plasmonic Metals to Graphene.
    Mhlanga N; Ntho TA; Chauke H; Sikhwivhilu L
    Front Chem; 2022; 10():832282. PubMed ID: 35355787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Appearance of SERS activity in single silver nanoparticles by laser-induced reshaping.
    Chaudhari K; Ahuja T; Murugesan V; Subramanian V; Ganayee MA; Thundat T; Pradeep T
    Nanoscale; 2018 Dec; 11(1):321-330. PubMed ID: 30534777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarization-based super-resolution imaging of surface-enhanced Raman scattering nanoparticles with orientational information.
    Wang M; Chen M; Zhanghao K; Zhang X; Jing Z; Gao J; Zhang MQ; Jin D; Dai Z; Xi P; Dai Q
    Nanoscale; 2018 Nov; 10(42):19757-19765. PubMed ID: 30211422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Janus plasmonic-magnetic gold-iron oxide nanoparticles as contrast agents for multimodal imaging.
    Reguera J; Jiménez de Aberasturi D; Henriksen-Lacey M; Langer J; Espinosa A; Szczupak B; Wilhelm C; Liz-Marzán LM
    Nanoscale; 2017 Jul; 9(27):9467-9480. PubMed ID: 28660946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Super-Resolution Surface-Enhanced Raman Scattering: Perspectives on the Past, Present, and Future.
    Willets KA
    ACS Nano; 2024 Oct; 18(41):27824-27832. PubMed ID: 39353138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universal surface-enhanced Raman tags: individual nanorods for measurements from the visible to the infrared (514-1064 nm).
    McLintock A; Cunha-Matos CA; Zagnoni M; Millington OR; Wark AW
    ACS Nano; 2014 Aug; 8(8):8600-9. PubMed ID: 25106075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates.
    Theiss J; Pavaskar P; Echternach PM; Muller RE; Cronin SB
    Nano Lett; 2010 Aug; 10(8):2749-54. PubMed ID: 20698586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.