BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 29552683)

  • 1. Diiron monooxygenases in natural product biosynthesis.
    Komor AJ; Jasniewski AJ; Que L; Lipscomb JD
    Nat Prod Rep; 2018 Jul; 35(7):646-659. PubMed ID: 29552683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A family of diiron monooxygenases catalyzing amino acid beta-hydroxylation in antibiotic biosynthesis.
    Makris TM; Chakrabarti M; Münck E; Lipscomb JD
    Proc Natl Acad Sci U S A; 2010 Aug; 107(35):15391-6. PubMed ID: 20713732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CmlI N-Oxygenase Catalyzes the Final Three Steps in Chloramphenicol Biosynthesis without Dissociation of Intermediates.
    Komor AJ; Rivard BS; Fan R; Guo Y; Que L; Lipscomb JD
    Biochemistry; 2017 Sep; 56(37):4940-4950. PubMed ID: 28823151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Carboxylate Shift Regulates Dioxygen Activation by the Diiron Nonheme β-Hydroxylase CmlA upon Binding of a Substrate-Loaded Nonribosomal Peptide Synthetase.
    Jasniewski AJ; Knoot CJ; Lipscomb JD; Que L
    Biochemistry; 2016 Oct; 55(41):5818-5831. PubMed ID: 27668828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism for Six-Electron Aryl-N-Oxygenation by the Non-Heme Diiron Enzyme CmlI.
    Komor AJ; Rivard BS; Fan R; Guo Y; Que L; Lipscomb JD
    J Am Chem Soc; 2016 Jun; 138(23):7411-21. PubMed ID: 27203126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of a dinuclear iron cluster-containing β-hydroxylase active in antibiotic biosynthesis.
    Makris TM; Knoot CJ; Wilmot CM; Lipscomb JD
    Biochemistry; 2013 Sep; 52(38):6662-71. PubMed ID: 23980641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An unusual peroxo intermediate of the arylamine oxygenase of the chloramphenicol biosynthetic pathway.
    Makris TM; Vu VV; Meier KK; Komor AJ; Rivard BS; Münck E; Que L; Lipscomb JD
    J Am Chem Soc; 2015 Feb; 137(4):1608-17. PubMed ID: 25564306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of CmlI, the arylamine oxygenase from the chloramphenicol biosynthetic pathway.
    Knoot CJ; Kovaleva EG; Lipscomb JD
    J Biol Inorg Chem; 2016 Sep; 21(5-6):589-603. PubMed ID: 27229511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unprecedented (μ-1,1-Peroxo)diferric Structure for the Ambiphilic Orange Peroxo Intermediate of the Nonheme N-Oxygenase CmlI.
    Jasniewski AJ; Komor AJ; Lipscomb JD; Que L
    J Am Chem Soc; 2017 Aug; 139(30):10472-10485. PubMed ID: 28673082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Diiron Monooxygenase CmlA from Chloramphenicol Biosynthesis Allows Reconstitution of β-Hydroxylation during Glycopeptide Antibiotic Biosynthesis.
    Kaniusaite M; Goode RJA; Schittenhelm RB; Makris TM; Cryle MJ
    ACS Chem Biol; 2019 Dec; 14(12):2932-2941. PubMed ID: 31774267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Convergent Theoretical Prediction of Reactive Oxidant Structures in Diiron Arylamine Oxygenases AurF and CmlI: Peroxo or Hydroperoxo?
    Wang C; Chen H
    J Am Chem Soc; 2017 Sep; 139(37):13038-13046. PubMed ID: 28844144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of Isotopes and Isotope Effects for Investigations of Diiron Oxygenase Mechanisms.
    Banerjee R; Komor AJ; Lipscomb JD
    Methods Enzymol; 2017; 596():239-290. PubMed ID: 28911774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Four-electron oxidation of p-hydroxylaminobenzoate to p-nitrobenzoate by a peroxodiferric complex in AurF from Streptomyces thioluteus.
    Li N; Korboukh VK; Krebs C; Bollinger JM
    Proc Natl Acad Sci U S A; 2010 Sep; 107(36):15722-7. PubMed ID: 20798054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling Oxygen Consumption with Hydrocarbon Oxidation in Bacterial Multicomponent Monooxygenases.
    Wang W; Liang AD; Lippard SJ
    Acc Chem Res; 2015 Sep; 48(9):2632-9. PubMed ID: 26293615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active-site structure of a β-hydroxylase in antibiotic biosynthesis.
    Vu VV; Makris TM; Lipscomb JD; Que L
    J Am Chem Soc; 2011 May; 133(18):6938-41. PubMed ID: 21506543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AurF from Streptomyces thioluteus and a possible new family of manganese/iron oxygenases.
    Krebs C; Matthews ML; Jiang W; Bollinger JM
    Biochemistry; 2007 Sep; 46(37):10413-8. PubMed ID: 17718517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. C(sp
    Lu J; Lai W; Chen H
    Angew Chem Int Ed Engl; 2022 Nov; 61(46):e202211843. PubMed ID: 36087023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a non-ribosomal peptide synthetase-associated diiron arylamine N-oxygenase from Pseudomonas syringae pv. phaseolicola.
    Platter E; Lawson M; Marsh C; Sazinsky MH
    Arch Biochem Biophys; 2011 Apr; 508(1):39-45. PubMed ID: 21241656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steady-state kinetics and spectroscopic characterization of enzyme-tRNA interactions for the non-heme diiron tRNA-monooxygenase, MiaE.
    Subedi BP; Corder AL; Zhang S; Foss FW; Pierce BS
    Biochemistry; 2015 Jan; 54(2):363-76. PubMed ID: 25453905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly selective but multifunctional oxygenases in secondary metabolism.
    Cochrane RV; Vederas JC
    Acc Chem Res; 2014 Oct; 47(10):3148-61. PubMed ID: 25250512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.