These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 29553145)

  • 1. Predicting Daily Activities From Egocentric Images Using Deep Learning.
    Castro D; Hickson S; Bettadapura V; Thomaz E; Abowd G; Christensen H; Essa I
    Proc Int Symp Wearable Comput; 2015 Aug; 2015():75-82. PubMed ID: 29553145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Ensemble of Fine-Tuned Convolutional Neural Networks for Medical Image Classification.
    Kumar A; Kim J; Lyndon D; Fulham M; Feng D
    IEEE J Biomed Health Inform; 2017 Jan; 21(1):31-40. PubMed ID: 28114041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning assisted detection of glaucomatous optic neuropathy and potential designs for a generalizable model.
    Ko YC; Wey SY; Chen WT; Chang YF; Chen MJ; Chiou SH; Liu CJ; Lee CY
    PLoS One; 2020; 15(5):e0233079. PubMed ID: 32407355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.
    Pang S; Yu Z; Orgun MA
    Comput Methods Programs Biomed; 2017 Mar; 140():283-293. PubMed ID: 28254085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fusion of Appearance and Motion Features for Daily Activity Recognition from Egocentric Perspective.
    Lye MH; AlDahoul N; Abdul Karim H
    Sensors (Basel); 2023 Jul; 23(15):. PubMed ID: 37571588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying daily activities of patient work for type 2 diabetes and co-morbidities: a deep learning and wearable camera approach.
    Xiong H; Phan HN; Yin K; Berkovsky S; Jung J; Lau AYS
    J Am Med Inform Assoc; 2022 Jul; 29(8):1400-1408. PubMed ID: 35582885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Convolutional Neural Network Based on Extreme Learning Machine for Maritime Ships Recognition in Infrared Images.
    Khellal A; Ma H; Fei Q
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29747439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of CT brain images based on deep learning networks.
    Gao XW; Hui R; Tian Z
    Comput Methods Programs Biomed; 2017 Jan; 138():49-56. PubMed ID: 27886714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tree-CNN: A hierarchical Deep Convolutional Neural Network for incremental learning.
    Roy D; Panda P; Roy K
    Neural Netw; 2020 Jan; 121():148-160. PubMed ID: 31563011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognition of peripheral blood cell images using convolutional neural networks.
    Acevedo A; Alférez S; Merino A; Puigví L; Rodellar J
    Comput Methods Programs Biomed; 2019 Oct; 180():105020. PubMed ID: 31425939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skin lesion classification with ensembles of deep convolutional neural networks.
    Harangi B
    J Biomed Inform; 2018 Oct; 86():25-32. PubMed ID: 30103029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multisource fusion framework driven by user-defined knowledge for egocentric activity recognition.
    Yu H; Jia W; Li Z; Gong F; Yuan D; Zhang H; Sun M
    EURASIP J Adv Signal Process; 2019; 2019(1):14. PubMed ID: 30881444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic food detection in egocentric images using artificial intelligence technology.
    Jia W; Li Y; Qu R; Baranowski T; Burke LE; Zhang H; Bai Y; Mancino JM; Xu G; Mao ZH; Sun M
    Public Health Nutr; 2019 May; 22(7):1168-1179. PubMed ID: 29576027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fusing learned representations from Riesz Filters and Deep CNN for lung tissue classification.
    Joyseeree R; Otálora S; Müller H; Depeursinge A
    Med Image Anal; 2019 Aug; 56():172-183. PubMed ID: 31229761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A CAD system for pulmonary nodule prediction based on deep three-dimensional convolutional neural networks and ensemble learning.
    Huang W; Xue Y; Wu Y
    PLoS One; 2019; 14(7):e0219369. PubMed ID: 31299053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of Random Forest Classifiers and Deep Convolutional Neural Networks for Classification and Biomolecular Modeling of Cancer Driver Mutations.
    Agajanian S; Oluyemi O; Verkhivker GM
    Front Mol Biosci; 2019; 6():44. PubMed ID: 31245384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Hierarchical Deep Fusion Framework for Egocentric Activity Recognition Using a Wearable Hybrid Sensor System.
    Yu H; Pan G; Pan M; Li C; Jia W; Zhang L; Sun M
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30696100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Convolutional Neural Networks for breast cancer screening.
    Chougrad H; Zouaki H; Alheyane O
    Comput Methods Programs Biomed; 2018 Apr; 157():19-30. PubMed ID: 29477427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images.
    Mylonas A; Keall PJ; Booth JT; Shieh CC; Eade T; Poulsen PR; Nguyen DT
    Med Phys; 2019 May; 46(5):2286-2297. PubMed ID: 30929254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning-based detection and classification of geographic atrophy using a deep convolutional neural network classifier.
    Treder M; Lauermann JL; Eter N
    Graefes Arch Clin Exp Ophthalmol; 2018 Nov; 256(11):2053-2060. PubMed ID: 30091055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.