These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 29553526)
21. TWISP: a transgenic worm for interrogating signal propagation in Caenorhabditis elegans. Sharma AK; Randi F; Kumar S; Dvali S; Leifer AM Genetics; 2024 Jul; 227(3):. PubMed ID: 38733622 [TBL] [Abstract][Full Text] [Related]
22. Microfluidic Devices for Behavioral Analysis, Microscopy, and Neuronal Imaging in Caenorhabditis elegans. Lagoy RC; Larsen E; Lawler D; White H; Albrecht DR Methods Mol Biol; 2022; 2468():293-318. PubMed ID: 35320572 [TBL] [Abstract][Full Text] [Related]
23. In vivo neuronal calcium imaging in C. elegans. Chung SH; Sun L; Gabel CV J Vis Exp; 2013 Apr; (74):. PubMed ID: 23603812 [TBL] [Abstract][Full Text] [Related]
24. Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light. Schrödel T; Prevedel R; Aumayr K; Zimmer M; Vaziri A Nat Methods; 2013 Oct; 10(10):1013-20. PubMed ID: 24013820 [TBL] [Abstract][Full Text] [Related]
25. Lab-on-chips for manipulation of small-scale organisms to facilitate imaging of neurons and organs. Ardeshiri R; Rezai P Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5749-5752. PubMed ID: 28269560 [TBL] [Abstract][Full Text] [Related]
26. Under Pressure: A Microfluidic Chip for Prolonged, Anesthetic-Free Imaging of Neuronal Mitostasis in Franco JA eNeuro; 2021; 8(5):. PubMed ID: 34475223 [No Abstract] [Full Text] [Related]
27. On-chip analysis of C. elegans muscular forces and locomotion patterns in microstructured environments. Johari S; Nock V; Alkaisi MM; Wang W Lab Chip; 2013 May; 13(9):1699-707. PubMed ID: 23511608 [TBL] [Abstract][Full Text] [Related]
28. Reversible and long-term immobilization in a hydrogel-microbead matrix for high-resolution imaging of Caenorhabditis elegans and other small organisms. Dong L; Cornaglia M; Krishnamani G; Zhang J; Mouchiroud L; Lehnert T; Auwerx J; Gijs MAM PLoS One; 2018; 13(3):e0193989. PubMed ID: 29509812 [TBL] [Abstract][Full Text] [Related]
29. Microfluidic Platform for Analyzing the Thermotaxis of C. elegans in a Linear Temperature Gradient. Yoon S; Piao H; Jeon TJ; Kim SM Anal Sci; 2017; 33(12):1435-1440. PubMed ID: 29225236 [TBL] [Abstract][Full Text] [Related]
30. Long-term C. elegans immobilization enables high resolution developmental studies in vivo. Berger S; Lattmann E; Aegerter-Wilmsen T; Hengartner M; Hajnal A; deMello A; Casadevall i Solvas X Lab Chip; 2018 May; 18(9):1359-1368. PubMed ID: 29652050 [TBL] [Abstract][Full Text] [Related]
31. Optofluidic ptychography on a chip. Song P; Guo C; Jiang S; Wang T; Hu P; Hu D; Zhang Z; Feng B; Zheng G Lab Chip; 2021 Nov; 21(23):4549-4556. PubMed ID: 34726219 [TBL] [Abstract][Full Text] [Related]
32. Development of ultra-thin chips for immobilization of Caenorhabditis elegans in microfluidic channels during irradiation and selection of buffer solution to prevent dehydration. Suzuki M; Sakashita T; Hattori Y; Yokota Y; Kobayashi Y; Funayama T J Neurosci Methods; 2018 Aug; 306():32-37. PubMed ID: 29859879 [TBL] [Abstract][Full Text] [Related]
33. The Stress-Chip: A microfluidic platform for stress analysis in Caenorhabditis elegans. Banse SA; Blue BW; Robinson KJ; Jarrett CM; Phillips PC PLoS One; 2019; 14(5):e0216283. PubMed ID: 31042764 [TBL] [Abstract][Full Text] [Related]
34. A microfluidic device for efficient chemical testing using Caenorhabditis elegans. Song P; Zhang W; Sobolevski A; Bernard K; Hekimi S; Liu X Biomed Microdevices; 2015 Apr; 17(2):38. PubMed ID: 25744157 [TBL] [Abstract][Full Text] [Related]
35. Phenotyping of the thrashing forces exerted by partially immobilized C. elegans using elastomeric micropillar arrays. Sofela S; Sahloul S; Stubbs C; Orozaliev A; Refai FS; Esmaeel AM; Fahs H; Abdelgawad MO; Gunsalus KC; Song YA Lab Chip; 2019 Nov; 19(21):3685-3696. PubMed ID: 31576392 [TBL] [Abstract][Full Text] [Related]
36. Microfluidics and fluorescence microscopy protocol to study the response of C. elegans to chemosensory stimuli. Bruggeman CW; Haasnoot GH; Peterman EJG STAR Protoc; 2023 Mar; 4(1):102121. PubMed ID: 36853676 [TBL] [Abstract][Full Text] [Related]
37. Automated and controlled mechanical stimulation and functional imaging in vivo in C. elegans. Cho Y; Porto DA; Hwang H; Grundy LJ; Schafer WR; Lu H Lab Chip; 2017 Jul; 17(15):2609-2618. PubMed ID: 28660945 [TBL] [Abstract][Full Text] [Related]
38. PDMS filter structures for size-dependent larval sorting and on-chip egg extraction of C. elegans. Atakan HB; Ayhan F; Gijs MAM Lab Chip; 2020 Jan; 20(1):155-167. PubMed ID: 31793616 [TBL] [Abstract][Full Text] [Related]
39. Microfluidic Devices for Behavioral Analysis, Microscopy, and Neuronal Imaging in Caenorhabditis elegans. Lagoy RC; Albrecht DR Methods Mol Biol; 2015; 1327():159-79. PubMed ID: 26423974 [TBL] [Abstract][Full Text] [Related]
40. Microfluidics for mechanobiology of model organisms. Kim AA; Nekimken AL; Fechner S; O'Brien LE; Pruitt BL Methods Cell Biol; 2018; 146():217-259. PubMed ID: 30037463 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]