BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

864 related articles for article (PubMed ID: 29553573)

  • 1. Base editing with a Cpf1-cytidine deaminase fusion.
    Li X; Wang Y; Liu Y; Yang B; Wang X; Wei J; Lu Z; Zhang Y; Wu J; Huang X; Yang L; Chen J
    Nat Biotechnol; 2018 Apr; 36(4):324-327. PubMed ID: 29553573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycosylase base editors enable C-to-A and C-to-G base changes.
    Zhao D; Li J; Li S; Xin X; Hu M; Price MA; Rosser SJ; Bi C; Zhang X
    Nat Biotechnol; 2021 Jan; 39(1):35-40. PubMed ID: 32690970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome editing with type II-C CRISPR-Cas9 systems from Neisseria meningitidis in rice.
    Xu R; Qin R; Xie H; Li J; Liu X; Zhu M; Sun Y; Yu Y; Lu P; Wei P
    Plant Biotechnol J; 2022 Feb; 20(2):350-359. PubMed ID: 34582079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Fidelity Cytosine Base Editing in a GC-Rich Corynebacterium glutamicum with Reduced DNA Off-Target Editing Effects.
    Heo YB; Hwang GH; Kang SW; Bae S; Woo HM
    Microbiol Spectr; 2022 Dec; 10(6):e0376022. PubMed ID: 36374037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-Cpf1-mediated genome editing and gene regulation in human cells.
    Li T; Zhu L; Xiao B; Gong Z; Liao Q; Guo J
    Biotechnol Adv; 2019; 37(1):21-27. PubMed ID: 30399413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors.
    Grünewald J; Zhou R; Garcia SP; Iyer S; Lareau CA; Aryee MJ; Joung JK
    Nature; 2019 May; 569(7756):433-437. PubMed ID: 30995674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of high-precision base editors for site-specific single nucleotide replacement.
    Tan J; Zhang F; Karcher D; Bock R
    Nat Commun; 2019 Jan; 10(1):439. PubMed ID: 30683865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly efficient single base editing in Aspergillus niger with CRISPR/Cas9 cytidine deaminase fusion.
    Huang L; Dong H; Zheng J; Wang B; Pan L
    Microbiol Res; 2019; 223-225():44-50. PubMed ID: 31178050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BE-FLARE: a fluorescent reporter of base editing activity reveals editing characteristics of APOBEC3A and APOBEC3B.
    Coelho MA; Li S; Pane LS; Firth M; Ciotta G; Wrigley JD; Cuomo ME; Maresca M; Taylor BJM
    BMC Biol; 2018 Dec; 16(1):150. PubMed ID: 30593278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective gene editing by high-fidelity base editor 2 in mouse zygotes.
    Liang P; Sun H; Sun Y; Zhang X; Xie X; Zhang J; Zhang Z; Chen Y; Ding C; Xiong Y; Ma W; Liu D; Huang J; Songyang Z
    Protein Cell; 2017 Aug; 8(8):601-611. PubMed ID: 28585179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells.
    Kurt IC; Zhou R; Iyer S; Garcia SP; Miller BR; Langner LM; Grünewald J; Joung JK
    Nat Biotechnol; 2021 Jan; 39(1):41-46. PubMed ID: 32690971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient multinucleotide deletions using deaminase-Cas9 fusions in human cells.
    Chen S; Liu Z; Yu H; Lai L; Li Z
    J Genet Genomics; 2022 Oct; 49(10):927-933. PubMed ID: 35421582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors.
    Huang TP; Zhao KT; Miller SM; Gaudelli NM; Oakes BL; Fellmann C; Savage DF; Liu DR
    Nat Biotechnol; 2019 Jun; 37(6):626-631. PubMed ID: 31110355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cas9-orthologue-mediated cytosine and adenine base editors recognizing NNAAAA PAM sequences.
    Li M; Zhao Y; Xue X; Zhong J; Lin J; Zhou J; Yu W; Chen J; Qiao Y
    Biotechnol J; 2023 May; 18(5):e2200533. PubMed ID: 36800529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The "new favorite" of gene editing technology-single base editors.
    Wei Y; Zhang XH; Li DL
    Yi Chuan; 2017 Dec; 39(12):1115-1121. PubMed ID: 29258982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Editing a Stomatal Developmental Gene in Rice with CRISPR/Cpf1.
    Yin X; Anand A; Quick P; Bandyopadhyay A
    Methods Mol Biol; 2019; 1917():257-268. PubMed ID: 30610642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplex Gene Disruption by Targeted Base Editing of Yarrowia lipolytica Genome Using Cytidine Deaminase Combined with the CRISPR/Cas9 System.
    Bae SJ; Park BG; Kim BG; Hahn JS
    Biotechnol J; 2020 Jan; 15(1):e1900238. PubMed ID: 31657874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly efficient base editing with expanded targeting scope using SpCas9-NG in rabbits.
    Liu Z; Shan H; Chen S; Chen M; Song Y; Lai L; Li Z
    FASEB J; 2020 Jan; 34(1):588-596. PubMed ID: 31914687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BE-PLUS: a new base editing tool with broadened editing window and enhanced fidelity.
    Jiang W; Feng S; Huang S; Yu W; Li G; Yang G; Liu Y; Zhang Y; Zhang L; Hou Y; Chen J; Chen J; Huang X
    Cell Res; 2018 Aug; 28(8):855-861. PubMed ID: 29875396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas-Mediated Base Editing: Technical Considerations and Practical Applications.
    Molla KA; Yang Y
    Trends Biotechnol; 2019 Oct; 37(10):1121-1142. PubMed ID: 30995964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.