BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 29553716)

  • 1. Directed Evolution as a Probe of Rate Promoting Vibrations Introduced via Mutational Change.
    Chen X; Schwartz SD
    Biochemistry; 2018 Jun; 57(23):3289-3298. PubMed ID: 29553716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of the Turnover in Artificial Enzymes via Directed Evolution Results in the Coupling of Protein Dynamics to Chemistry.
    Schafer JW; Zoi I; Antoniou D; Schwartz SD
    J Am Chem Soc; 2019 Jul; 141(26):10431-10439. PubMed ID: 31199129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring challenges in rational enzyme design by simulating the catalysis in artificial kemp eliminase.
    Frushicheva MP; Cao J; Chu ZT; Warshel A
    Proc Natl Acad Sci U S A; 2010 Sep; 107(39):16869-74. PubMed ID: 20829491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition path sampling study of classical rate-promoting vibrations.
    Antoniou D; Abolfath MR; Schwartz SD
    J Chem Phys; 2004 Oct; 121(13):6442-7. PubMed ID: 15446943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bridging the gaps in design methodologies by evolutionary optimization of the stability and proficiency of designed Kemp eliminase KE59.
    Khersonsky O; Kiss G; Röthlisberger D; Dym O; Albeck S; Houk KN; Baker D; Tawfik DS
    Proc Natl Acad Sci U S A; 2012 Jun; 109(26):10358-63. PubMed ID: 22685214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Importance of the Scaffold for de Novo Enzymes: A Case Study with Kemp Eliminase.
    Bhowmick A; Sharma SC; Head-Gordon T
    J Am Chem Soc; 2017 Apr; 139(16):5793-5800. PubMed ID: 28383910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics explorations of active site structure in designed and evolved enzymes.
    Osuna S; Jiménez-Osés G; Noey EL; Houk KN
    Acc Chem Res; 2015 Apr; 48(4):1080-9. PubMed ID: 25738880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary optimization of computationally designed enzymes: Kemp eliminases of the KE07 series.
    Khersonsky O; Röthlisberger D; Dym O; Albeck S; Jackson CJ; Baker D; Tawfik DS
    J Mol Biol; 2010 Mar; 396(4):1025-42. PubMed ID: 20036254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of reorganization energy drives evolution of the designed Kemp eliminase KE07.
    Labas A; Szabo E; Mones L; Fuxreiter M
    Biochim Biophys Acta; 2013 May; 1834(5):908-17. PubMed ID: 23380188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein engineering from "scratch" is maturing.
    Höhne M; Bornscheuer UT
    Angew Chem Int Ed Engl; 2014 Jan; 53(5):1200-2. PubMed ID: 24339163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revealing the Origin of the Efficiency of the De Novo Designed Kemp Eliminase HG-3.17 by Comparison with the Former Developed HG-3.
    Świderek K; Tuñón I; Moliner V; Bertran J
    Chemistry; 2017 Jun; 23(31):7582-7589. PubMed ID: 28334464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How enzyme dynamics helps catalyze a reaction in atomic detail: a transition path sampling study.
    Basner JE; Schwartz SD
    J Am Chem Soc; 2005 Oct; 127(40):13822-31. PubMed ID: 16201803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacophore modeling using site-identification by ligand competitive saturation (SILCS) with multiple probe molecules.
    Yu W; Lakkaraju SK; Raman EP; Fang L; MacKerell AD
    J Chem Inf Model; 2015 Feb; 55(2):407-20. PubMed ID: 25622696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kemp elimination catalysts by computational enzyme design.
    Röthlisberger D; Khersonsky O; Wollacott AM; Jiang L; DeChancie J; Betker J; Gallaher JL; Althoff EA; Zanghellini A; Dym O; Albeck S; Houk KN; Tawfik DS; Baker D
    Nature; 2008 May; 453(7192):190-5. PubMed ID: 18354394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kemp Elimination Catalyzed by Naturally Occurring Aldoxime Dehydratases.
    Miao Y; Metzner R; Asano Y
    Chembiochem; 2017 Mar; 18(5):451-454. PubMed ID: 28120515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M; Kawai R; Adams JA; Weare JH
    J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction coordinate of an enzymatic reaction revealed by transition path sampling.
    Quaytman SL; Schwartz SD
    Proc Natl Acad Sci U S A; 2007 Jul; 104(30):12253-8. PubMed ID: 17640885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the Development of Ground-State Destabilization and Transition-State Stabilization in Two Directed Evolution Paths of Kemp Eliminases.
    Jindal G; Ramachandran B; Bora RP; Warshel A
    ACS Catal; 2017 May; 7(5):3301-3305. PubMed ID: 29082065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of carbamate inactivation of FAAH: implications for the design of covalent inhibitors and in vivo functional probes for enzymes.
    Alexander JP; Cravatt BF
    Chem Biol; 2005 Nov; 12(11):1179-87. PubMed ID: 16298297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Promoting vibrations in human purine nucleoside phosphorylase. A molecular dynamics and hybrid quantum mechanical/molecular mechanical study.
    Núñez S; Antoniou D; Schramm VL; Schwartz SD
    J Am Chem Soc; 2004 Dec; 126(48):15720-9. PubMed ID: 15571394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.