BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 29554215)

  • 1. Integrating long-range connectivity information into de Bruijn graphs.
    Turner I; Garimella KV; Iqbal Z; McVean G
    Bioinformatics; 2018 Aug; 34(15):2556-2565. PubMed ID: 29554215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A space and time-efficient index for the compacted colored de Bruijn graph.
    Almodaresi F; Sarkar H; Srivastava A; Patro R
    Bioinformatics; 2018 Jul; 34(13):i169-i177. PubMed ID: 29949982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. deBGR: an efficient and near-exact representation of the weighted de Bruijn graph.
    Pandey P; Bender MA; Johnson R; Patro R
    Bioinformatics; 2017 Jul; 33(14):i133-i141. PubMed ID: 28881995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of string and de Bruijn graphs for genome assembly.
    Huang YT; Liao CF
    Bioinformatics; 2016 May; 32(9):1301-7. PubMed ID: 26755626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly of long error-prone reads using de Bruijn graphs.
    Lin Y; Yuan J; Kolmogorov M; Shen MW; Chaisson M; Pevzner PA
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):E8396-E8405. PubMed ID: 27956617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RResolver: efficient short-read repeat resolution within ABySS.
    Nikolić V; Afshinfard A; Chu J; Wong J; Coombe L; Nip KM; Warren RL; Birol I
    BMC Bioinformatics; 2022 Jun; 23(1):246. PubMed ID: 35729491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cuttlefish: fast, parallel and low-memory compaction of de Bruijn graphs from large-scale genome collections.
    Khan J; Patro R
    Bioinformatics; 2021 Jul; 37(Suppl_1):i177-i186. PubMed ID: 34252958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Building large updatable colored de Bruijn graphs via merging.
    Muggli MD; Alipanahi B; Boucher C
    Bioinformatics; 2019 Jul; 35(14):i51-i60. PubMed ID: 31510647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient parallel and out of core algorithms for constructing large bi-directed de Bruijn graphs.
    Kundeti VK; Rajasekaran S; Dinh H; Vaughn M; Thapar V
    BMC Bioinformatics; 2010 Nov; 11():560. PubMed ID: 21078174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inference of viral quasispecies with a paired de Bruijn graph.
    Freire B; Ladra S; Paramá JR; Salmela L
    Bioinformatics; 2021 May; 37(4):473-481. PubMed ID: 32926162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Succinct colored de Bruijn graphs.
    Muggli MD; Bowe A; Noyes NR; Morley PS; Belk KE; Raymond R; Gagie T; Puglisi SJ; Boucher C
    Bioinformatics; 2017 Oct; 33(20):3181-3187. PubMed ID: 28200001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward perfect reads: self-correction of short reads via mapping on de Bruijn graphs.
    Limasset A; Flot JF; Peterlongo P
    Bioinformatics; 2020 Mar; 36(5):1374-1381. PubMed ID: 30785192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Practical dynamic de Bruijn graphs.
    Crawford VG; Kuhnle A; Boucher C; Chikhi R; Gagie T
    Bioinformatics; 2018 Dec; 34(24):4189-4195. PubMed ID: 29939217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MBG: Minimizer-based sparse de Bruijn Graph construction.
    Rautiainen M; Marschall T
    Bioinformatics; 2021 Aug; 37(16):2476-2478. PubMed ID: 33475133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BubbleGun: enumerating bubbles and superbubbles in genome graphs.
    Dabbaghie F; Ebler J; Marschall T
    Bioinformatics; 2022 Sep; 38(17):4217-4219. PubMed ID: 35799353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aligning optical maps to de Bruijn graphs.
    Mukherjee K; Alipanahi B; Kahveci T; Salmela L; Boucher C
    Bioinformatics; 2019 Sep; 35(18):3250-3256. PubMed ID: 30698651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Read mapping on de Bruijn graphs.
    Limasset A; Cazaux B; Rivals E; Peterlongo P
    BMC Bioinformatics; 2016 Jun; 17(1):237. PubMed ID: 27306641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HyDA-Vista: towards optimal guided selection of k-mer size for sequence assembly.
    Shariat B; Movahedi NS; Chitsaz H; Boucher C
    BMC Genomics; 2014; 15 Suppl 10(Suppl 10):S9. PubMed ID: 25558875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches.
    Cherukuri Y; Janga SC
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):507. PubMed ID: 27556636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scalable De Novo Genome Assembly Using a Pregel-Like Graph-Parallel System.
    Guo G; Chen H; Yan D; Cheng J; Chen JY; Chong Z
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):731-744. PubMed ID: 31180898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.