These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 29554428)

  • 21. High-performance n-Si/α-Fe2O3 core/shell nanowire array photoanode towards photoelectrochemical water splitting.
    Qi X; She G; Huang X; Zhang T; Wang H; Mu L; Shi W
    Nanoscale; 2014 Mar; 6(6):3182-9. PubMed ID: 24500641
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst.
    Seabold JA; Choi KS
    J Am Chem Soc; 2012 Feb; 134(4):2186-92. PubMed ID: 22263661
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adjusting the Crystallinity of Mesoporous Spinel CoGa2O4 for Efficient Water Oxidation.
    Xu Z; Yan SC; Shi Z; Yao YF; Zhou P; Wang HY; Zou ZG
    ACS Appl Mater Interfaces; 2016 May; 8(20):12887-93. PubMed ID: 27142693
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photoelectrochemical oxidation of water using BaTaO2N photoanodes prepared by particle transfer method.
    Ueda K; Minegishi T; Clune J; Nakabayashi M; Hisatomi T; Nishiyama H; Katayama M; Shibata N; Kubota J; Yamada T; Domen K
    J Am Chem Soc; 2015 Feb; 137(6):2227-30. PubMed ID: 25650748
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gradient FeO(x)(PO4)(y) layer on hematite photoanodes: novel structure for efficient light-driven water oxidation.
    Zhang Y; Zhou Z; Chen C; Che Y; Ji H; Ma W; Zhang J; Song D; Zhao J
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12844-51. PubMed ID: 25068504
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting.
    Kim TW; Choi KS
    Science; 2014 Feb; 343(6174):990-4. PubMed ID: 24526312
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Silicon decorated with amorphous cobalt molybdenum sulfide catalyst as an efficient photocathode for solar hydrogen generation.
    Chen Y; Tran PD; Boix P; Ren Y; Chiam SY; Li Z; Fu K; Wong LH; Barber J
    ACS Nano; 2015 Apr; 9(4):3829-36. PubMed ID: 25801437
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polymer-Mediated Self-Assembly of TiO2@Cu2O Core-Shell Nanowire Array for Highly Efficient Photoelectrochemical Water Oxidation.
    Yuan W; Yuan J; Xie J; Li CM
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6082-92. PubMed ID: 26908094
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving O2 production of WO3 photoanodes with IrO2 in acidic aqueous electrolyte.
    Spurgeon JM; Velazquez JM; McDowell MT
    Phys Chem Chem Phys; 2014 Feb; 16(8):3623-31. PubMed ID: 24435160
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient solar water oxidation using photovoltaic devices functionalized with earth-abundant oxygen evolving catalysts.
    Cristino V; Berardi S; Caramori S; Argazzi R; Carli S; Meda L; Tacca A; Bignozzi CA
    Phys Chem Chem Phys; 2013 Aug; 15(31):13083-92. PubMed ID: 23820552
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced Interfacial Charge Transfer on a Tungsten Trioxide Photoanode with Immobilized Molecular Iridium Catalyst.
    Tong H; Jiang Y; Zhang Q; Li J; Jiang W; Zhang D; Li N; Xia L
    ChemSusChem; 2017 Aug; 10(16):3268-3275. PubMed ID: 28612494
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Near-complete suppression of surface recombination in solar photoelectrolysis by "Co-Pi" catalyst-modified W:BiVO4.
    Zhong DK; Choi S; Gamelin DR
    J Am Chem Soc; 2011 Nov; 133(45):18370-7. PubMed ID: 21942320
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved charge separation via Fe-doping of copper tungstate photoanodes.
    Bohra D; Smith WA
    Phys Chem Chem Phys; 2015 Apr; 17(15):9857-66. PubMed ID: 25776231
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Constructing Fe2O3/TiO2 core-shell photoelectrodes for efficient photoelectrochemical water splitting.
    Wang M; Pyeon M; Gönüllü Y; Kaouk A; Shen S; Guo L; Mathur S
    Nanoscale; 2015 Jun; 7(22):10094-100. PubMed ID: 25980730
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced photoelectrochemical water oxidation performance of a hematite photoanode by decorating with Au-Pt core-shell nanoparticles.
    Chen B; Fan W; Mao B; Shen H; Shi W
    Dalton Trans; 2017 Nov; 46(46):16050-16057. PubMed ID: 29119164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antimony(III) Sulfide Thin Films as a Photoanode Material in Photocatalytic Water Splitting.
    DeAngelis AD; Kemp KC; Gaillard N; Kim KS
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8445-51. PubMed ID: 27003726
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decomposition of Methanol on Mixed CuO-CuWO
    Blatnik M; Drechsel C; Tsud N; Surnev S; Netzer FP
    J Phys Chem B; 2018 Jan; 122(2):679-687. PubMed ID: 28832149
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mesoporous α-Fe2O3 thin films synthesized via the sol-gel process for light-driven water oxidation.
    Hamd W; Cobo S; Fize J; Baldinozzi G; Schwartz W; Reymermier M; Pereira A; Fontecave M; Artero V; Laberty-Robert C; Sanchez C
    Phys Chem Chem Phys; 2012 Oct; 14(38):13224-32. PubMed ID: 22911106
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 1D ZnO/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting.
    Yan L; Zhao W; Liu Z
    Dalton Trans; 2016 Jul; 45(28):11346-52. PubMed ID: 27328331
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Marked enhancement in electron-hole separation achieved in the low bias region using electrochemically prepared Mo-doped BiVO4 photoanodes.
    Park Y; Kang D; Choi KS
    Phys Chem Chem Phys; 2014 Jan; 16(3):1238-46. PubMed ID: 24296682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.