BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 29554481)

  • 1. The transgenic chicken derived anti-CD20 monoclonal antibodies exhibits greater anti-cancer therapeutic potential with enhanced Fc effector functions.
    Kim YM; Park JS; Kim SK; Jung KM; Hwang YS; Han M; Lee HJ; Seo HW; Suh JY; Han BK; Han JY
    Biomaterials; 2018 Jun; 167():58-68. PubMed ID: 29554481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding to CD20 by anti-B1 antibody or F(ab')(2) is sufficient for induction of apoptosis in B-cell lines.
    Cardarelli PM; Quinn M; Buckman D; Fang Y; Colcher D; King DJ; Bebbington C; Yarranton G
    Cancer Immunol Immunother; 2002 Mar; 51(1):15-24. PubMed ID: 11845256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A complement-dependent cytotoxicity-enhancing anti-CD20 antibody mediating potent antitumor activity in the humanized NOD/Shi-scid, IL-2Rγ(null) mouse lymphoma model.
    Sato F; Ito A; Ishida T; Mori F; Takino H; Inagaki A; Ri M; Kusumoto S; Komatsu H; Iida S; Okada N; Inagaki H; Ueda R
    Cancer Immunol Immunother; 2010 Dec; 59(12):1791-800. PubMed ID: 20714721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel glycosylated anti-CD20 monoclonal antibody from transgenic cattle.
    Zhang R; Tang C; Guo H; Tang B; Hou S; Zhao L; Wang J; Ding F; Zhao J; Wang H; Chen Z; Dai Y; Li N
    Sci Rep; 2018 Sep; 8(1):13208. PubMed ID: 30181542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional properties of FC-2.15, a monoclonal antibody that mediates human complement cytotoxicity against breast cancer cells.
    Ballaré C; Barrio M; Portela P; Mordoh J
    Cancer Immunol Immunother; 1995 Jul; 41(1):15-22. PubMed ID: 7641216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-level expression of single-chain Fv-Fc fusion protein in serum and egg white of genetically manipulated chickens by using a retroviral vector.
    Kamihira M; Ono K; Esaka K; Nishijima K; Kigaku R; Komatsu H; Yamashita T; Kyogoku K; Iijima S
    J Virol; 2005 Sep; 79(17):10864-74. PubMed ID: 16103139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The early development of germ cells in chicken.
    Kim YM; Han JY
    Int J Dev Biol; 2018; 62(1-2-3):145-152. PubMed ID: 29616722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Illuminating the chicken model through genetic modification.
    Davey MG; Balic A; Rainger J; Sang HM; McGrew MJ
    Int J Dev Biol; 2018; 62(1-2-3):257-264. PubMed ID: 29616734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of transcription factors during area pellucida formation in intrauterine chicken embryos.
    Han JY; Lee HG; Hwang YS; Lee HC; Kim SK; Rengaraj D
    Int J Dev Biol; 2018; 62(4-5):341-345. PubMed ID: 29877574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted gene insertion into Z chromosome of chicken primordial germ cells for avian sexing model development.
    Lee HJ; Yoon JW; Jung KM; Kim YM; Park JS; Lee KY; Park KJ; Hwang YS; Park YH; Rengaraj D; Han JY
    FASEB J; 2019 Jul; 33(7):8519-8529. PubMed ID: 30951374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precise Genome Editing in Poultry and Its Application to Industries.
    Park JS; Lee KY; Han JY
    Genes (Basel); 2020 Oct; 11(10):. PubMed ID: 33053652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Epigenetic Regulation by the REST/CoREST/HDAC Corepressor Complex of Moderate NANOG Expression in Chicken Primordial Germ Cells.
    Jung HG; Hwang YS; Park YH; Cho HY; Rengaraj D; Han JY
    Stem Cells Dev; 2018 Sep; 27(17):1215-1225. PubMed ID: 30032710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acquisition of pluripotency in the chick embryo occurs during intrauterine embryonic development via a unique transcriptional network.
    Han JY; Lee HG; Park YH; Hwang YS; Kim SK; Rengaraj D; Cho BW; Lim JM
    J Anim Sci Biotechnol; 2018; 9():31. PubMed ID: 29644074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted Knockout of MDA5 and TLR3 in the DF-1 Chicken Fibroblast Cell Line Impairs Innate Immune Response Against RNA Ligands.
    Lee SB; Park YH; Chungu K; Woo SJ; Han ST; Choi HJ; Rengaraj D; Han JY
    Front Immunol; 2020; 11():678. PubMed ID: 32425931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Host-Specific Restriction of Avian Influenza Virus Caused by Differential Dynamics of ANP32 Family Members.
    Park YH; Chungu K; Lee SB; Woo SJ; Cho HY; Lee HJ; Rengaraj D; Lee JH; Song CS; Lim JM; Han JY
    J Infect Dis; 2020 Jan; 221(1):71-80. PubMed ID: 31581291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whole-Transcriptome Sequencing-Based Analysis of
    Rengaraj D; Won S; Han JW; Yoo D; Kim H; Han JY
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33142918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of germline chimeric quails by transplantation of cryopreserved testicular cells into developing embryos.
    Park KJ; Jung KM; Kim YM; Lee KH; Han JY
    Theriogenology; 2020 Oct; 156():189-195. PubMed ID: 32755718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of quail (Coturnix japonica) germline chimeras by transfer of Ficoll-enriched spermatogonial stem cells.
    Han JY; Cho HY; Kim YM; Park KJ; Jung KM; Park JS
    Theriogenology; 2020 Sep; 154():223-231. PubMed ID: 32679354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and characterization of primordial germ cells in a vocal learning Neoaves species, the zebra finch.
    Jung KM; Kim YM; Keyte AL; Biegler MT; Rengaraj D; Lee HJ; Mello CV; Velho TAF; Fedrigo O; Haase B; Jarvis ED; Han JY
    FASEB J; 2019 Dec; 33(12):13825-13836. PubMed ID: 31604057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential disruption of ALV host receptor genes reveals no sharing of receptors between ALV subgroups A, B, and J.
    Lee HJ; Park KJ; Lee KY; Yao Y; Nair V; Han JY
    J Anim Sci Biotechnol; 2019; 10():23. PubMed ID: 30976416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.