BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29554553)

  • 1. A novel model for predicting bioelectrochemical performance of microsized-MFCs by incorporating bacterial chemotaxis parameters and simulation of biofilm formation.
    Kalantar M; Mardanpour MM; Yaghmaei S
    Bioelectrochemistry; 2018 Aug; 122():51-60. PubMed ID: 29554553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of impaired twitching motility and biofilm dispersion on performance of Pseudomonas aeruginosa-powered microbial fuel cells.
    Shreeram DD; Panmanee W; McDaniel CT; Daniel S; Schaefer DW; Hassett DJ
    J Ind Microbiol Biotechnol; 2018 Feb; 45(2):103-109. PubMed ID: 29288437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Shewanella biofilm promotes bioelectricity generation.
    Liu T; Yu YY; Deng XP; Ng CK; Cao B; Wang JY; Rice SA; Kjelleberg S; Song H
    Biotechnol Bioeng; 2015 Oct; 112(10):2051-9. PubMed ID: 25899863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpretation of the electrochemical response of a multi-population biofilm in a microfluidic microbial fuel cell using a comprehensive model.
    Mardanpour MM; Saadatmand M; Yaghmaei S
    Bioelectrochemistry; 2019 Aug; 128():39-48. PubMed ID: 30917333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structures, Compositions, and Activities of Live Shewanella Biofilms Formed on Graphite Electrodes in Electrochemical Flow Cells.
    Kitayama M; Koga R; Kasai T; Kouzuma A; Watanabe K
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28625998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The utility of Shewanella japonica for microbial fuel cells.
    Biffinger JC; Fitzgerald LA; Ray R; Little BJ; Lizewski SE; Petersen ER; Ringeisen BR; Sanders WC; Sheehan PE; Pietron JJ; Baldwin JW; Nadeau LJ; Johnson GR; Ribbens M; Finkel SE; Nealson KH
    Bioresour Technol; 2011 Jan; 102(1):290-7. PubMed ID: 20663660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential biofilms characteristics of Shewanella decolorationis microbial fuel cells under open and closed circuit conditions.
    Yang Y; Sun G; Guo J; Xu M
    Bioresour Technol; 2011 Jul; 102(14):7093-8. PubMed ID: 21571526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells.
    Pinto D; Coradin T; Laberty-Robert C
    Bioelectrochemistry; 2018 Apr; 120():1-9. PubMed ID: 29132011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering S. oneidensis for Performance Improvement of Microbial Fuel Cell-a Mini Review.
    Leung DHL; Lim YS; Uma K; Pan GT; Lin JH; Chong S; Yang TC
    Appl Biochem Biotechnol; 2021 Apr; 193(4):1170-1186. PubMed ID: 33200267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ monitoring of Shewanella oneidensis MR-1 biofilm growth on gold electrodes by using a Pt microelectrode.
    Bao H; Zheng Z; Yang B; Liu D; Li F; Zhang X; Li Z; Lei L
    Bioelectrochemistry; 2016 Jun; 109():95-100. PubMed ID: 26850925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm.
    Yong YC; Yu YY; Zhang X; Song H
    Angew Chem Int Ed Engl; 2014 Apr; 53(17):4480-3. PubMed ID: 24644059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biofilm promoted current generation of Pseudomonas aeruginosa microbial fuel cell via improving the interfacial redox reaction of phenazines.
    Qiao YJ; Qiao Y; Zou L; Wu XS; Liu JH
    Bioelectrochemistry; 2017 Oct; 117():34-39. PubMed ID: 28575838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological and electrochemical effects of different electron acceptors on bacterial anode respiration in bioelectrochemical systems.
    Yang Y; Xiang Y; Xia C; Wu WM; Sun G; Xu M
    Bioresour Technol; 2014 Jul; 164():270-5. PubMed ID: 24862003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient storage of electrical charge in biofilms of Shewanella oneidensis MR-1 growing in a microbial fuel cell.
    Uría N; Muñoz Berbel X; Sánchez O; Muñoz FX; Mas J
    Environ Sci Technol; 2011 Dec; 45(23):10250-6. PubMed ID: 21981730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring electron and proton diffusion flux through three-dimensional, paper-based, variable biofilm and liquid media layers.
    Choi G; Choi S
    Analyst; 2015 Sep; 140(17):5901-7. PubMed ID: 26179156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deteriorated biofilm-forming capacity and electroactivity of Shewanella oneidnsis MR-1 induced by insertion sequence (IS) elements.
    Cheng L; Min D; Liu DF; Zhu TT; Wang KL; Yu HQ
    Biosens Bioelectron; 2020 May; 156():112136. PubMed ID: 32174561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen allows Shewanella oneidensis MR-1 to overcome mediator washout in a continuously fed bioelectrochemical system.
    TerAvest MA; Rosenbaum MA; Kotloski NJ; Gralnick JA; Angenent LT
    Biotechnol Bioeng; 2014 Apr; 111(4):692-9. PubMed ID: 24122485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initial development and structure of biofilms on microbial fuel cell anodes.
    Read ST; Dutta P; Bond PL; Keller J; Rabaey K
    BMC Microbiol; 2010 Apr; 10():98. PubMed ID: 20356407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aggrandizing power output from Shewanella oneidensis MR-1 microbial fuel cells using calcium chloride.
    Fitzgerald LA; Petersen ER; Gross BJ; Soto CM; Ringeisen BR; El-Naggar MY; Biffinger JC
    Biosens Bioelectron; 2012 Jan; 31(1):492-8. PubMed ID: 22154401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrogenic Single-Species Biocomposites as Anodes for Microbial Fuel Cells.
    Kaiser P; Reich S; Leykam D; Willert-Porada M; Greiner A; Freitag R
    Macromol Biosci; 2017 Jul; 17(7):. PubMed ID: 28337840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.