These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
311 related articles for article (PubMed ID: 29554612)
1. Environmental concentrations of pharmaceuticals directly affect phytoplankton and effects propagate through trophic interactions. Grzesiuk M; Spijkerman E; Lachmann SC; Wacker A Ecotoxicol Environ Saf; 2018 Jul; 156():271-278. PubMed ID: 29554612 [TBL] [Abstract][Full Text] [Related]
2. Photosynthetic sensitivity of phytoplankton to commonly used pharmaceuticals and its dependence on cellular phosphorus status. Grzesiuk M; Wacker A; Spijkerman E Ecotoxicology; 2016 May; 25(4):697-707. PubMed ID: 26894612 [TBL] [Abstract][Full Text] [Related]
3. Respective contributions of diet and medium to the bioaccumulation of pharmaceutical compounds in the first levels of an aquatic trophic web. Orias F; Simon L; Perrodin Y Environ Sci Pollut Res Int; 2015 Dec; 22(24):20207-14. PubMed ID: 26304809 [TBL] [Abstract][Full Text] [Related]
4. Assessing lethal and sub-lethal effects of trichlorfon on different trophic levels. Coelho S; Oliveira R; Pereira S; Musso C; Domingues I; Bhujel RC; Soares AM; Nogueira AJ Aquat Toxicol; 2011 Jun; 103(3-4):191-8. PubMed ID: 21473847 [TBL] [Abstract][Full Text] [Related]
5. Effect of an antidepressant on aquatic ecosystems in the presence of microplastics: A mesocosm study. Vasantha Raman N; Gebreyohanes Belay BM; South J; Botha TL; Pegg J; Khosa D; Mofu L; Walsh G; Jordaan MS; Koelmans AA; Teurlincx S; Helmsing NR; de Jong N; van Donk E; Lürling M; Wepener V; Fernandes TV; de Senerpont Domis LN Environ Pollut; 2024 Sep; 357():124439. PubMed ID: 38942279 [TBL] [Abstract][Full Text] [Related]
6. Toxicity and bioconcentration potential of the agricultural pesticide endosulfan in phytoplankton and zooplankton. DeLorenzo ME; Taylor LA; Lund SA; Pennington PL; Strozier ED; Fulton MH Arch Environ Contam Toxicol; 2002 Feb; 42(2):173-81. PubMed ID: 11815808 [TBL] [Abstract][Full Text] [Related]
7. Acute and chronic effects of paracetamol exposure on Daphnia magna: how oxidative effects may modulate responses at distinct levels of organization in a model species. Daniel D; Dionísio R; de Alkimin GD; Nunes B Environ Sci Pollut Res Int; 2019 Feb; 26(4):3320-3329. PubMed ID: 30506442 [TBL] [Abstract][Full Text] [Related]
8. Different modes of TiO2 uptake by Ceriodaphnia dubia: relevance to toxicity and bioaccumulation. Dalai S; Iswarya V; Bhuvaneshwari M; Pakrashi S; Chandrasekaran N; Mukherjee A Aquat Toxicol; 2014 Jul; 152():139-46. PubMed ID: 24755515 [TBL] [Abstract][Full Text] [Related]
9. Toxicity of aqueous vanadium to zooplankton and phytoplankton species of relevance to the athabasca oil sands region. Schiffer S; Liber K Ecotoxicol Environ Saf; 2017 Mar; 137():1-11. PubMed ID: 27871041 [TBL] [Abstract][Full Text] [Related]
10. Effects of dietary exposure to herbicide and of the nutritive quality of contaminated food on the reproductive output of Daphnia magna. Bessa da Silva M; Abrantes N; Rocha-Santos TA; Duarte AC; Freitas AC; Gomes AM; Carvalho AP; Marques JC; Gonçalves F; Pereira R Aquat Toxicol; 2016 Oct; 179():1-7. PubMed ID: 27541481 [TBL] [Abstract][Full Text] [Related]
11. Effect of copper contaminated food on the life cycle and secondary production of Daphnia laevis. Rocha GS; Tonietto AE; Lombardi AT; Melão Mda G Ecotoxicol Environ Saf; 2016 Nov; 133():235-42. PubMed ID: 27472028 [TBL] [Abstract][Full Text] [Related]
12. Modeling the direct and indirect effects of copper on phytoplankton-zooplankton interactions. Prosnier L; Loreau M; Hulot FD Aquat Toxicol; 2015 May; 162():73-81. PubMed ID: 25781394 [TBL] [Abstract][Full Text] [Related]
13. Uptake and toxicity of CuO nanoparticles to Daphnia magna varies between indirect dietary and direct waterborne exposures. Wu F; Bortvedt A; Harper BJ; Crandon LE; Harper SL Aquat Toxicol; 2017 Sep; 190():78-86. PubMed ID: 28697458 [TBL] [Abstract][Full Text] [Related]
14. Influence of microplastics on the toxicity of the pharmaceuticals procainamide and doxycycline on the marine microalgae Tetraselmis chuii. Prata JC; Lavorante BRBO; B S M Montenegro MDC; Guilhermino L Aquat Toxicol; 2018 Apr; 197():143-152. PubMed ID: 29494946 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of the potential for trophic transfer of roxithromycin along an experimental food chain. Ding J; Lu G; Liu J; Zhang Z Environ Sci Pollut Res Int; 2015 Jul; 22(14):10592-600. PubMed ID: 25739841 [TBL] [Abstract][Full Text] [Related]
16. Toxicity, accumulation, and trophic transfer of chemically and biologically synthesized nano zero valent iron in a two species freshwater food chain. Bhuvaneshwari M; Kumar D; Roy R; Chakraborty S; Parashar A; Mukherjee A; Chandrasekaran N; Mukherjee A Aquat Toxicol; 2017 Feb; 183():63-75. PubMed ID: 28024216 [TBL] [Abstract][Full Text] [Related]
17. Food web effects of titanium dioxide nanoparticles in an outdoor freshwater mesocosm experiment. Jovanović B; Bezirci G; Çağan AS; Coppens J; Levi EE; Oluz Z; Tuncel E; Duran H; Beklioğlu M Nanotoxicology; 2016 Sep; 10(7):902-12. PubMed ID: 26901391 [TBL] [Abstract][Full Text] [Related]
18. Toxicity assessment of five emerging pollutants, alone and in binary or ternary mixtures, towards three aquatic organisms. Di Poi C; Costil K; Bouchart V; Halm-Lemeille MP Environ Sci Pollut Res Int; 2018 Mar; 25(7):6122-6134. PubMed ID: 28620858 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of the toxicity of nickel nanowires to freshwater organisms at concentrations and short-term exposures compatible with their application in water treatment. Nogueira V; Sousa CT; Araujo JP; Pereira R Aquat Toxicol; 2020 Oct; 227():105595. PubMed ID: 32911330 [TBL] [Abstract][Full Text] [Related]
20. Toxic potential of the emerging contaminant nicotine to the aquatic ecosystem. Oropesa AL; Floro AM; Palma P Environ Sci Pollut Res Int; 2017 Jul; 24(20):16605-16616. PubMed ID: 28474259 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]