These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 29554761)

  • 1. Engineered nanomaterials for plant growth and development: A perspective analysis.
    Verma SK; Das AK; Patel MK; Shah A; Kumar V; Gantait S
    Sci Total Environ; 2018 Jul; 630():1413-1435. PubMed ID: 29554761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants.
    Hatami M; Kariman K; Ghorbanpour M
    Sci Total Environ; 2016 Nov; 571():275-91. PubMed ID: 27485129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uptake and transformations of engineered nanomaterials: Critical responses observed in terrestrial plants and the model plant Arabidopsis thaliana.
    Montes A; Bisson MA; Gardella JA; Aga DS
    Sci Total Environ; 2017 Dec; 607-608():1497-1516. PubMed ID: 28793406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological and biochemical response of plants to engineered NMs: Implications on future design.
    de la Rosa G; García-Castañeda C; Vázquez-Núñez E; Alonso-Castro ÁJ; Basurto-Islas G; Mendoza Á; Cruz-Jiménez G; Molina C
    Plant Physiol Biochem; 2017 Jan; 110():226-235. PubMed ID: 27328789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomaterials in Plants: A Review of Hazard and Applications in the Agri-Food Sector.
    Kranjc E; Drobne D
    Nanomaterials (Basel); 2019 Jul; 9(8):. PubMed ID: 31366106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lessons learned: Are engineered nanomaterials toxic to terrestrial plants?
    Reddy PVL; Hernandez-Viezcas JA; Peralta-Videa JR; Gardea-Torresdey JL
    Sci Total Environ; 2016 Oct; 568():470-479. PubMed ID: 27314900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications of carbon nanomaterials in the plant system: A perspective view on the pros and cons.
    Verma SK; Das AK; Gantait S; Kumar V; Gurel E
    Sci Total Environ; 2019 Jun; 667():485-499. PubMed ID: 30833247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-examination of engineered nanomaterials in crop production: Application and related implications.
    Kusiak M; Oleszczuk P; Jośko I
    J Hazard Mater; 2022 Feb; 424(Pt A):127374. PubMed ID: 34879568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanotoxicity of engineered nanomaterials (ENMs) to environmentally relevant beneficial soil bacteria - a critical review.
    Lewis RW; Bertsch PM; McNear DH
    Nanotoxicology; 2019 Apr; 13(3):392-428. PubMed ID: 30760121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytotoxicity induced by engineered nanomaterials as explored by metabolomics: Perspectives and challenges.
    Li X; Peng T; Mu L; Hu X
    Ecotoxicol Environ Saf; 2019 Nov; 184():109602. PubMed ID: 31493589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of Engineered Nanoparticles with the Agri-environment.
    Pradhan S; Mailapalli DR
    J Agric Food Chem; 2017 Sep; 65(38):8279-8294. PubMed ID: 28876911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicity, Uptake, and Translocation of Engineered Nanomaterials in Vascular plants.
    Miralles P; Church TL; Harris AT
    Environ Sci Technol; 2012 Sep; 46(17):9224-39. PubMed ID: 22892035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant Response to Metal-Containing Engineered Nanomaterials: An Omics-Based Perspective.
    Ruotolo R; Maestri E; Pagano L; Marmiroli M; White JC; Marmiroli N
    Environ Sci Technol; 2018 Mar; 52(5):2451-2467. PubMed ID: 29377685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants--Critical review.
    Schwab F; Zhai G; Kern M; Turner A; Schnoor JL; Wiesner MR
    Nanotoxicology; 2016; 10(3):257-78. PubMed ID: 26067571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ecological nanotoxicology: integrating nanomaterial hazard considerations across the subcellular, population, community, and ecosystems levels.
    Holden PA; Nisbet RM; Lenihan HS; Miller RJ; Cherr GN; Schimel JP; Gardea-Torresdey JL
    Acc Chem Res; 2013 Mar; 46(3):813-22. PubMed ID: 23039211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses-A review.
    Zuverza-Mena N; Martínez-Fernández D; Du W; Hernandez-Viezcas JA; Bonilla-Bird N; López-Moreno ML; Komárek M; Peralta-Videa JR; Gardea-Torresdey JL
    Plant Physiol Biochem; 2017 Jan; 110():236-264. PubMed ID: 27289187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico analysis of nanomaterials hazard and risk.
    Cohen Y; Rallo R; Liu R; Liu HH
    Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent progress in bio-mediated synthesis and applications of engineered nanomaterials for sustainable agriculture.
    Bora KA; Hashmi S; Zulfiqar F; Abideen Z; Ali H; Siddiqui ZS; Siddique KHM
    Front Plant Sci; 2022; 13():999505. PubMed ID: 36262650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental Stresses Increase Photosynthetic Disruption by Metal Oxide Nanomaterials in a Soil-Grown Plant.
    Conway JR; Beaulieu AL; Beaulieu NL; Mazer SJ; Keller AA
    ACS Nano; 2015 Dec; 9(12):11737-49. PubMed ID: 26505090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental behaviors and toxic mechanisms of engineered nanomaterials in soil.
    Wang C; Chen L; Xu J; Zhang L; Yang X; Zhang X; Zhang C; Gao P; Zhu L
    Environ Res; 2024 Feb; 242():117820. PubMed ID: 38048867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.