These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 29554806)

  • 1. Time-Resolved Small-Angle X-ray Scattering Reveals Millisecond Transitions of a DNA Origami Switch.
    Bruetzel LK; Walker PU; Gerling T; Dietz H; Lipfert J
    Nano Lett; 2018 Apr; 18(4):2672-2676. PubMed ID: 29554806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational Changes and Flexibility of DNA Devices Observed by Small-Angle X-ray Scattering.
    Bruetzel LK; Gerling T; Sedlak SM; Walker PU; Zheng W; Dietz H; Lipfert J
    Nano Lett; 2016 Aug; 16(8):4871-9. PubMed ID: 27356232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape and Interhelical Spacing of DNA Origami Nanostructures Studied by Small-Angle X-ray Scattering.
    Fischer S; Hartl C; Frank K; Rädler JO; Liedl T; Nickel B
    Nano Lett; 2016 Jul; 16(7):4282-7. PubMed ID: 27184452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Position Accuracy of Gold Nanoparticles on DNA Origami Structures Studied with Small-Angle X-ray Scattering.
    Hartl C; Frank K; Amenitsch H; Fischer S; Liedl T; Nickel B
    Nano Lett; 2018 Apr; 18(4):2609-2615. PubMed ID: 29498287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-Induced Symmetry Conversion of DNA Origami Lattices.
    Wang Y; Yan X; Zhou Z; Ma N; Tian Y
    Angew Chem Int Ed Engl; 2022 Oct; 61(40):e202208290. PubMed ID: 35934673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dimensions and Global Twist of Single-Layer DNA Origami Measured by Small-Angle X-ray Scattering.
    Baker MAB; Tuckwell AJ; Berengut JF; Bath J; Benn F; Duff AP; Whitten AE; Dunn KE; Hynson RM; Turberfield AJ; Lee LK
    ACS Nano; 2018 Jun; 12(6):5791-5799. PubMed ID: 29812934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cation-Activated Avidity for Rapid Reconfiguration of DNA Nanodevices.
    Marras AE; Shi Z; Lindell MG; Patton RA; Huang CM; Zhou L; Su HJ; Arya G; Castro CE
    ACS Nano; 2018 Sep; 12(9):9484-9494. PubMed ID: 30169013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components.
    Ong LL; Hanikel N; Yaghi OK; Grun C; Strauss MT; Bron P; Lai-Kee-Him J; Schueder F; Wang B; Wang P; Kishi JY; Myhrvold C; Zhu A; Jungmann R; Bellot G; Ke Y; Yin P
    Nature; 2017 Dec; 552(7683):72-77. PubMed ID: 29219968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the mechanical properties of DNA origami tiles and controlling the kinetics of their folding and unfolding reconfiguration.
    Chen H; Weng TW; Riccitelli MM; Cui Y; Irudayaraj J; Choi JH
    J Am Chem Soc; 2014 May; 136(19):6995-7005. PubMed ID: 24749534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photo-controllable DNA origami nanostructures assembling into predesigned multiorientational patterns.
    Yang Y; Endo M; Hidaka K; Sugiyama H
    J Am Chem Soc; 2012 Dec; 134(51):20645-53. PubMed ID: 23210720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly and microscopic characterization of DNA origami structures.
    Scheible M; Jungmann R; Simmel FC
    Adv Exp Med Biol; 2012; 733():87-96. PubMed ID: 22101715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-Situ Configuration Studies on Segmented DNA Origami Nanotubes.
    Zhu B; Guo J; Zhang L; Pan M; Jing X; Wang L; Liu X; Zuo X
    Chembiochem; 2019 Jun; 20(12):1508-1513. PubMed ID: 30702811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-enhanced Raman scattering plasmonic enhancement using DNA origami-based complex metallic nanostructures.
    Pilo-Pais M; Watson A; Demers S; LaBean TH; Finkelstein G
    Nano Lett; 2014; 14(4):2099-104. PubMed ID: 24645937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, synthesis, and characterization of protein origami based on self-assembly of a brick and staple artificial protein pair.
    Moreaud L; Viollet S; Urvoas A; Valerio-Lepiniec M; Mesneau A; Li de la Sierra-Gallay I; Miller J; Ouldali M; Marcelot C; Balor S; Soldan V; Meriadec C; Artzner F; Dujardin E; Minard P
    Proc Natl Acad Sci U S A; 2023 Mar; 120(11):e2218428120. PubMed ID: 36893280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guiding the folding pathway of DNA origami.
    Dunn KE; Dannenberg F; Ouldridge TE; Kwiatkowska M; Turberfield AJ; Bath J
    Nature; 2015 Sep; 525(7567):82-6. PubMed ID: 26287459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconfigurable pH-Responsive DNA Origami Lattices.
    Julin S; Linko V; Kostiainen MA
    ACS Nano; 2023 Jun; 17(11):11014-11022. PubMed ID: 37257137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA origami tubes with reconfigurable cross-sections.
    Kucinic A; Huang CM; Wang J; Su HJ; Castro CE
    Nanoscale; 2023 Jan; 15(2):562-572. PubMed ID: 36520453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic DNA Origami Device for Measuring Compressive Depletion Forces.
    Hudoba MW; Luo Y; Zacharias A; Poirier MG; Castro CE
    ACS Nano; 2017 Jul; 11(7):6566-6573. PubMed ID: 28582611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Transformation of Wireframe DNA Origami via DNA Polymerase Assisted Gap-Filling.
    Agarwal NP; Matthies M; Joffroy B; Schmidt TL
    ACS Nano; 2018 Mar; 12(3):2546-2553. PubMed ID: 29451771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution-Controlled Conformational Switching of an Anchored Wireframe DNA Nanostructure.
    Hoffecker IT; Chen S; Gådin A; Bosco A; Teixeira AI; Högberg B
    Small; 2019 Jan; 15(1):e1803628. PubMed ID: 30516020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.