BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29555102)

  • 21. A Role for the Chaperone Complex BAG3-HSPB8 in Actin Dynamics, Spindle Orientation and Proper Chromosome Segregation during Mitosis.
    Fuchs M; Luthold C; Guilbert SM; Varlet AA; Lambert H; Jetté A; Elowe S; Landry J; Lavoie JN
    PLoS Genet; 2015 Oct; 11(10):e1005582. PubMed ID: 26496431
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Regulation of the Small Heat Shock Protein B8 in Misfolding Protein Diseases Causing Motoneuronal and Muscle Cell Death.
    Cristofani R; Rusmini P; Galbiati M; Cicardi ME; Ferrari V; Tedesco B; Casarotto E; Chierichetti M; Messi E; Piccolella M; Carra S; Crippa V; Poletti A
    Front Neurosci; 2019; 13():796. PubMed ID: 31427919
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NF-κB regulates protein quality control after heat stress through modulation of the BAG3-HspB8 complex.
    Nivon M; Abou-Samra M; Richet E; Guyot B; Arrigo AP; Kretz-Remy C
    J Cell Sci; 2012 Mar; 125(Pt 5):1141-51. PubMed ID: 22302993
    [TBL] [Abstract][Full Text] [Related]  

  • 24. HspB8 participates in protein quality control by a non-chaperone-like mechanism that requires eIF2{alpha} phosphorylation.
    Carra S; Brunsting JF; Lambert H; Landry J; Kampinga HH
    J Biol Chem; 2009 Feb; 284(9):5523-32. PubMed ID: 19114712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The small heat shock protein HspB8: role in nervous system physiology and pathology.
    Vicario M; Skaper SD; Negro A
    CNS Neurol Disord Drug Targets; 2014; 13(5):885-95. PubMed ID: 25012617
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Role of HSPB8, a Component of the Chaperone-Assisted Selective Autophagy Machinery, in Cancer.
    Cristofani R; Piccolella M; Crippa V; Tedesco B; Montagnani Marelli M; Poletti A; Moretti RM
    Cells; 2021 Feb; 10(2):. PubMed ID: 33562660
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Replacement of Arg in the conserved N-terminal RLFDQxFG motif affects physico-chemical properties and chaperone-like activity of human small heat shock protein HspB8 (Hsp22).
    Shatov VM; Sluchanko NN; Gusev NB
    PLoS One; 2021; 16(6):e0253432. PubMed ID: 34143841
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heat Shock Protein 27 Enhances SUMOylation of Heat Shock Protein B8 to Accelerate the Progression of Breast Cancer.
    Wang S; Zhang X; Wang H; Wang Y; Chen P; Wang L
    Am J Pathol; 2020 Dec; 190(12):2464-2477. PubMed ID: 33222991
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of the Drosophila ortholog of HSPB8: implication of HSPB8 loss of function in protein folding diseases.
    Carra S; Boncoraglio A; Kanon B; Brunsting JF; Minoia M; Rana A; Vos MJ; Seidel K; Sibon OC; Kampinga HH
    J Biol Chem; 2010 Nov; 285(48):37811-22. PubMed ID: 20858900
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Small heat shock proteins HSP27 (HspB1), αB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death.
    Acunzo J; Katsogiannou M; Rocchi P
    Int J Biochem Cell Biol; 2012 Oct; 44(10):1622-31. PubMed ID: 22521623
    [TBL] [Abstract][Full Text] [Related]  

  • 31. BAG3 Is a Modular, Scaffolding Protein that physically Links Heat Shock Protein 70 (Hsp70) to the Small Heat Shock Proteins.
    Rauch JN; Tse E; Freilich R; Mok SA; Makley LN; Southworth DR; Gestwicki JE
    J Mol Biol; 2017 Jan; 429(1):128-141. PubMed ID: 27884606
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Caught in the middle: the role of Bag3 in disease.
    McCollum AK; Casagrande G; Kohn EC
    Biochem J; 2009 Dec; 425(1):e1-3. PubMed ID: 20001957
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The chaperone-like activity of rat HspB8/Hsp22 and dynamic molecular transition related to oligomeric architectures in vitro.
    Yang Z; Lu Y; Liu J; Wang Y; Zhao X
    Protein Pept Lett; 2012 Mar; 19(3):353-9. PubMed ID: 22185499
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Abnormal small heat shock protein interactions involving neuropathy-associated HSP22 (HSPB8) mutants.
    Fontaine JM; Sun X; Hoppe AD; Simon S; Vicart P; Welsh MJ; Benndorf R
    FASEB J; 2006 Oct; 20(12):2168-70. PubMed ID: 16935933
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of small heat shock protein B8 (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis.
    Roelofs MF; Boelens WC; Joosten LA; Abdollahi-Roodsaz S; Geurts J; Wunderink LU; Schreurs BW; van den Berg WB; Radstake TR
    J Immunol; 2006 Jun; 176(11):7021-7. PubMed ID: 16709864
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oligodendroglia-derived extracellular vesicles activate autophagy via LC3B/BAG3 to protect against oxidative stress with an enhanced effect for HSPB8 enriched vesicles.
    Van den Broek B; Wuyts C; Sisto A; Pintelon I; Timmermans JP; Somers V; Timmerman V; Hellings N; Irobi J
    Cell Commun Signal; 2022 May; 20(1):58. PubMed ID: 35513867
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Axonal Neuropathies due to Mutations in Small Heat Shock Proteins: Clinical, Genetic, and Functional Insights into Novel Mutations.
    Echaniz-Laguna A; Geuens T; Petiot P; Péréon Y; Adriaenssens E; Haidar M; Capponi S; Maisonobe T; Fournier E; Dubourg O; Degos B; Salachas F; Lenglet T; Eymard B; Delmont E; Pouget J; Juntas Morales R; Goizet C; Latour P; Timmerman V; Stojkovic T
    Hum Mutat; 2017 May; 38(5):556-568. PubMed ID: 28144995
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphorylation of human small heat shock protein HspB8 (Hsp22) by ERK1 protein kinase.
    Shemetov AA; Seit-Nebi AS; Gusev NB
    Mol Cell Biochem; 2011 Sep; 355(1-2):47-55. PubMed ID: 21526341
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interactions of HSP22 (HSPB8) with HSP20, alphaB-crystallin, and HSPB3.
    Fontaine JM; Sun X; Benndorf R; Welsh MJ
    Biochem Biophys Res Commun; 2005 Nov; 337(3):1006-11. PubMed ID: 16225851
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Study on aggregate formation mechanism of HSPB8 gene mutation resulting in CMT2L].
    Zhang RX; Tang BS; Zi XH; Xia K; Pan Q; Zhang FF; Li SJ; Zhao GH; Guo K
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2006 Dec; 23(6):601-4. PubMed ID: 17160934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.