These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 29555269)

  • 21. The effect of binding on the subharmonic emissions from individual lipid-encapsulated microbubbles at transmit frequencies of 11 and 25 MHz.
    Helfield BL; Cherin E; Foster FS; Goertz DE
    Ultrasound Med Biol; 2013 Feb; 39(2):345-59. PubMed ID: 23219039
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrafast monitoring and control of subharmonic emissions of an unseeded bubble cloud during pulsed sonication.
    Cornu C; Guédra M; Béra JC; Liu HL; Chen WS; Inserra C
    Ultrason Sonochem; 2018 Apr; 42():697-703. PubMed ID: 29429720
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-speed observation of bubble cloud generation near a rigid wall by second-harmonic superimposed ultrasound.
    Yoshizawa S; Yasuda J; Umemura S
    J Acoust Soc Am; 2013 Aug; 134(2):1515-20. PubMed ID: 23927191
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancement and Passive Acoustic Mapping of Cavitation from Fluorescently Tagged Magnetic Resonance-Visible Magnetic Microbubbles In Vivo.
    Crake C; Owen J; Smart S; Coviello C; Coussios CC; Carlisle R; Stride E
    Ultrasound Med Biol; 2016 Dec; 42(12):3022-3036. PubMed ID: 27666788
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study on the bubble transport mechanism in an acoustic standing wave field.
    Xi X; Cegla FB; Lowe M; Thiemann A; Nowak T; Mettin R; Holsteyns F; Lippert A
    Ultrasonics; 2011 Dec; 51(8):1014-25. PubMed ID: 21719064
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An analysis of the acoustic cavitation noise spectrum: The role of periodic shock waves.
    Song JH; Johansen K; Prentice P
    J Acoust Soc Am; 2016 Oct; 140(4):2494. PubMed ID: 27794293
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction and suppression of HIFU-induced vessel rupture using passive cavitation detection in an ex vivo model.
    Hoerig CL; Serrone JC; Burgess MT; Zuccarello M; Mast TD
    J Ther Ultrasound; 2014; 2():14. PubMed ID: 25232483
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of analyzer based X-ray imaging technique for detection of ultrasound induced cavitation bubbles from a physical therapy unit.
    Izadifar Z; Belev G; Babyn P; Chapman D
    Biomed Eng Online; 2015 Oct; 14():91. PubMed ID: 26481447
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The acoustic emissions of cavitation bubbles in stretched vortices.
    Chang NA; Ceccio SL
    J Acoust Soc Am; 2011 Nov; 130(5):3209-19. PubMed ID: 22087993
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of nuclei concentration on cavitation cluster dynamics.
    Arora M; Ohl CD; Lohse D
    J Acoust Soc Am; 2007 Jun; 121(6):3432-6. PubMed ID: 17552694
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of cavitation-radiated acoustic power using diffraction correction.
    Rich KT; Holland CK; Rao MB; Mast TD
    J Acoust Soc Am; 2018 Dec; 144(6):3563. PubMed ID: 30599638
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intense cavitation at extreme static pressure.
    Pishchalnikov YA; Gutierrez J; Dunbar WW; Philpott RW
    Ultrasonics; 2016 Feb; 65():380-9. PubMed ID: 26341849
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Focused Ultrasound and Lithotripsy.
    Ikeda T; Yoshizawa S; Koizumi N; Mitsuishi M; Matsumoto Y
    Adv Exp Med Biol; 2016; 880():113-29. PubMed ID: 26486335
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Jet and Shock Wave from Collapse of Two Cavitation Bubbles.
    Luo J; Niu Z
    Sci Rep; 2019 Feb; 9(1):1352. PubMed ID: 30718594
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The generation of negative pressure waves for cavitation studies.
    Carnell MT; Gentry TP; Emmony DC
    Ultrasonics; 1998 Feb; 36(1-5):689-93. PubMed ID: 9651598
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancement and control of acoustic cavitation yield by low-level dual frequency sonication: a subharmonic analysis.
    Hasanzadeh H; Mokhtari-Dizaji M; Bathaie SZ; Hassan ZM; Nilchiani V; Goudarzi H
    Ultrason Sonochem; 2011 Jan; 18(1):394-400. PubMed ID: 20678953
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bubble size distribution in acoustic droplet vaporization via dissolution using an ultrasound wide-beam method.
    Xu S; Zong Y; Li W; Zhang S; Wan M
    Ultrason Sonochem; 2014 May; 21(3):975-83. PubMed ID: 24360840
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Laser-induced cavitation bubbles and shock waves in water near a concave surface.
    Požar T; Agrež V; Petkovšek R
    Ultrason Sonochem; 2021 May; 73():105456. PubMed ID: 33517094
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unsteady translation and repetitive jetting of acoustic cavitation bubbles.
    Nowak T; Mettin R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033016. PubMed ID: 25314538
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A real-time controller for sustaining thermally relevant acoustic cavitation during ultrasound therapy.
    Hockham N; Coussios CC; Arora M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2685-94. PubMed ID: 21156364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.