These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 29555281)

  • 1. Insights into numerical simulation of controlled ultrasonic waveforms driving single cavitation bubble activity.
    Kerboua K; Hamdaoui O
    Ultrason Sonochem; 2018 May; 43():237-247. PubMed ID: 29555281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic waveform upshot on mass variation within single cavitation bubble: Investigation of physical and chemical transformations.
    Kerboua K; Hamdaoui O
    Ultrason Sonochem; 2018 Apr; 42():508-516. PubMed ID: 29429697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of ultrasound frequency and acoustic amplitude on the size of sonochemically active bubbles - Theoretical study.
    Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2013 May; 20(3):815-9. PubMed ID: 23187064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical study on dual-frequency ultrasonic enhancing cavitation effect based on bubble dynamic evolution.
    Ye L; Zhu X; Liu Y
    Ultrason Sonochem; 2019 Dec; 59():104744. PubMed ID: 31473426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of liquid density variation on the bubble and gas dynamics of a single acoustic cavitation bubble.
    Nazari-Mahroo H; Pasandideh K; Navid HA; Sadighi-Bonabi R
    Ultrasonics; 2020 Mar; 102():106034. PubMed ID: 31670231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical investigation of the effect of dual frequency sonication on stable bubble dynamics.
    Kerboua K; Hamdaoui O
    Ultrason Sonochem; 2018 Dec; 49():325-332. PubMed ID: 30172464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical estimation of ultrasonic production of hydrogen: Effect of ideal and real gas based models.
    Kerboua K; Hamdaoui O
    Ultrason Sonochem; 2018 Jan; 40(Pt A):194-200. PubMed ID: 28946414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulation of the nonlinear ultrasonic pressure wave propagation in a cavitating bubbly liquid inside a sonochemical reactor.
    Dogan H; Popov V
    Ultrason Sonochem; 2016 May; 30():87-97. PubMed ID: 26611813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimum bubble temperature for the sonochemical production of oxidants.
    Yasui K; Tuziuti T; Iida Y
    Ultrasonics; 2004 Apr; 42(1-9):579-84. PubMed ID: 15047350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive numerical analysis of heat and mass transfer phenomenons during cavitation sono-process.
    Dehane A; Merouani S; Hamdaoui O; Alghyamah A
    Ultrason Sonochem; 2021 May; 73():105498. PubMed ID: 33706197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases.
    Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2015 Jan; 22():41-50. PubMed ID: 25112684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The size of active bubbles for the production of hydrogen in sonochemical reaction field.
    Merouani S; Hamdaoui O
    Ultrason Sonochem; 2016 Sep; 32():320-327. PubMed ID: 27150777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical estimation of the temperature and pressure within collapsing acoustical bubbles.
    Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2014 Jan; 21(1):53-9. PubMed ID: 23769748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic cavitation for sonochemical effects.
    Moholkar VS; Kumar PS; Pandit AB
    Ultrason Sonochem; 1999 Mar; 6(1-2):53-65. PubMed ID: 11233938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy analysis during acoustic bubble oscillations: relationship between bubble energy and sonochemical parameters.
    Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrasonics; 2014 Jan; 54(1):227-32. PubMed ID: 23683796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the effect of carbon-dioxide gas on cavitation.
    Gireesan S; Pandit AB
    Ultrason Sonochem; 2017 Jan; 34():721-728. PubMed ID: 27773299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulation of single bubble dynamics under acoustic standing waves.
    Qiu S; Ma X; Huang B; Li D; Wang G; Zhang M
    Ultrason Sonochem; 2018 Dec; 49():196-205. PubMed ID: 30174251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fragmentation of cavitation bubble in ultrasound field under small pressure amplitude.
    Yamamoto T; Hatanaka SI; Komarov SV
    Ultrason Sonochem; 2019 Nov; 58():104684. PubMed ID: 31450353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on characteristics of single cavitation bubble considering condensation and evaporation of kerosene steam under ultrasonic vibration honing.
    Ye L; Zhu X; Wang L; Guo C
    Ultrason Sonochem; 2018 Jan; 40(Pt A):988-994. PubMed ID: 28946511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of acoustic cavitation bubbles in different sound fields.
    Brotchie A; Grieser F; Ashokkumar M
    J Phys Chem B; 2010 Sep; 114(34):11010-6. PubMed ID: 20698516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.