These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 29555770)

  • 1. Converting
    Caforio A; Siliakus MF; Exterkate M; Jain S; Jumde VR; Andringa RLH; Kengen SWM; Minnaard AJ; Driessen AJM; van der Oost J
    Proc Natl Acad Sci U S A; 2018 Apr; 115(14):3704-3709. PubMed ID: 29555770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of the ether lipids archaetidylglycerol and archaetidylethanolamine in Escherichia coli.
    Caforio A; Jain S; Fodran P; Siliakus M; Minnaard AJ; van der Oost J; Driessen AJ
    Biochem J; 2015 Sep; 470(3):343-55. PubMed ID: 26195826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenomic analysis of lipid biosynthetic genes of Archaea shed light on the 'lipid divide'.
    Villanueva L; Schouten S; Damsté JS
    Environ Microbiol; 2017 Jan; 19(1):54-69. PubMed ID: 27112361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering E. coli to Have a Hybrid Archaeal/Bacterial Membrane.
    Villanueva L
    Trends Microbiol; 2018 Jul; 26(7):559-560. PubMed ID: 29789226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing Archaeal Lipid Biosynthesis in
    Hoekzema M; Jiang J; Driessen AJM
    ACS Synth Biol; 2024 Aug; 13(8):2470-2479. PubMed ID: 39096298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bridging the membrane lipid divide: bacteria of the FCB group superphylum have the potential to synthesize archaeal ether lipids.
    Villanueva L; von Meijenfeldt FAB; Westbye AB; Yadav S; Hopmans EC; Dutilh BE; Damsté JSS
    ISME J; 2021 Jan; 15(1):168-182. PubMed ID: 32929208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The catalytic and structural basis of archaeal glycerophospholipid biosynthesis.
    de Kok NAW; Driessen AJM
    Extremophiles; 2022 Aug; 26(3):29. PubMed ID: 35976526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Archaeal phospholipids: Structural properties and biosynthesis.
    Caforio A; Driessen AJM
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Nov; 1862(11):1325-1339. PubMed ID: 28007654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isoprenoid biosynthesis in Archaea--biochemical and evolutionary implications.
    Matsumi R; Atomi H; Driessen AJ; van der Oost J
    Res Microbiol; 2011 Jan; 162(1):39-52. PubMed ID: 21034816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origins and evolution of isoprenoid lipid biosynthesis in archaea.
    Boucher Y; Kamekura M; Doolittle WF
    Mol Microbiol; 2004 Apr; 52(2):515-27. PubMed ID: 15066037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disentangling the lipid divide: Identification of key enzymes for the biosynthesis of membrane-spanning and ether lipids in Bacteria.
    Sahonero-Canavesi DX; Siliakus MF; Abdala Asbun A; Koenen M; von Meijenfeldt FAB; Boeren S; Bale NJ; Engelman JC; Fiege K; Strack van Schijndel L; Sinninghe Damsté JS; Villanueva L
    Sci Adv; 2022 Dec; 8(50):eabq8652. PubMed ID: 36525503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of CDP-archaeol synthase, a missing link of ether lipid biosynthesis in Archaea.
    Jain S; Caforio A; Fodran P; Lolkema JS; Minnaard AJ; Driessen AJM
    Chem Biol; 2014 Oct; 21(10):1392-1401. PubMed ID: 25219966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic comparison of unilamellar vesicles reveals that archaeal core lipid membranes are more permeable than bacterial membranes.
    Łapińska U; Glover G; Kahveci Z; Irwin NAT; Milner DS; Tourte M; Albers SV; Santoro AE; Richards TA; Pagliara S
    PLoS Biol; 2023 Apr; 21(4):e3002048. PubMed ID: 37014915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early evolution of membrane lipids: how did the lipid divide occur?
    Koga Y
    J Mol Evol; 2011 Mar; 72(3):274-82. PubMed ID: 21259003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From promiscuity to the lipid divide: on the evolution of distinct membranes in Archaea and Bacteria.
    Koga Y
    J Mol Evol; 2014 Apr; 78(3-4):234-42. PubMed ID: 24573438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Archaeal lipids.
    Řezanka T; Kyselová L; Murphy DJ
    Prog Lipid Res; 2023 Jul; 91():101237. PubMed ID: 37236370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of producing high levels of hyperthermophile-specific C
    Yoshida R; Motoyama K; Ito T; Hemmi H
    Biochem Biophys Res Commun; 2024 Oct; 729():150349. PubMed ID: 38972140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A promiscuous archaeal cardiolipin synthase enables construction of diverse natural and unnatural phospholipids.
    Exterkate M; de Kok NAW; Andringa RLH; Wolbert NHJ; Minnaard AJ; Driessen AJM
    J Biol Chem; 2021; 296():100691. PubMed ID: 33894204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of heterochiral hybrid membrane made of bacterial sn-G3P lipids and archaeal sn-G1P lipids.
    Shimada H; Yamagishi A
    Biochemistry; 2011 May; 50(19):4114-20. PubMed ID: 21473653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stratification of archaeal membrane lipids in the ocean and implications for adaptation and chemotaxonomy of planktonic archaea.
    Zhu C; Wakeham SG; Elling FJ; Basse A; Mollenhauer G; Versteegh GJ; Könneke M; Hinrichs KU
    Environ Microbiol; 2016 Dec; 18(12):4324-4336. PubMed ID: 26950522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.