BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 29555822)

  • 1. Programmable Single and Multiplex Base-Editing in
    Li Y; Ma S; Sun L; Zhang T; Chang J; Lu W; Chen X; Liu Y; Wang X; Shi R; Zhao P; Xia Q
    G3 (Bethesda); 2018 May; 8(5):1701-1709. PubMed ID: 29555822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly efficient single base editing in Aspergillus niger with CRISPR/Cas9 cytidine deaminase fusion.
    Huang L; Dong H; Zheng J; Wang B; Pan L
    Microbiol Res; 2019; 223-225():44-50. PubMed ID: 31178050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted Base Editing via RNA-Guided Cytidine Deaminases in Xenopus laevis Embryos.
    Park DS; Yoon M; Kweon J; Jang AH; Kim Y; Choi SC
    Mol Cells; 2017 Nov; 40(11):823-827. PubMed ID: 29179261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.
    Komor AC; Kim YB; Packer MS; Zuris JA; Liu DR
    Nature; 2016 May; 533(7603):420-4. PubMed ID: 27096365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiplex Gene Disruption by Targeted Base Editing of Yarrowia lipolytica Genome Using Cytidine Deaminase Combined with the CRISPR/Cas9 System.
    Bae SJ; Park BG; Kim BG; Hahn JS
    Biotechnol J; 2020 Jan; 15(1):e1900238. PubMed ID: 31657874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Sequencing Reveals the Comprehensive CRISPR-Cas9 Editing Spectrum in
    Ma S; Wang A; Chen X; Zhang T; Xing W; Xia Q
    CRISPR J; 2021 Jun; 4(3):371-380. PubMed ID: 34042501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programmable base editing in zebrafish using a modified CRISPR-Cas9 system.
    Qin W; Lu X; Lin S
    Methods; 2018 Nov; 150():19-23. PubMed ID: 30076894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Development of a CRISPR/Cpf1 gene editing system in silkworm Bombyx mori].
    Dong Z; Qin Q; Zhang X; Li K; Chen P; Pan M
    Sheng Wu Gong Cheng Xue Bao; 2021 Dec; 37(12):4342-4350. PubMed ID: 34984879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deaminase-mediated multiplex genome editing in Escherichia coli.
    Banno S; Nishida K; Arazoe T; Mitsunobu H; Kondo A
    Nat Microbiol; 2018 Apr; 3(4):423-429. PubMed ID: 29403014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly efficient RNA-guided base editing in rabbit.
    Liu Z; Chen M; Chen S; Deng J; Song Y; Lai L; Li Z
    Nat Commun; 2018 Jul; 9(1):2717. PubMed ID: 30006570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9 mediated multiplex genome editing and heritable mutagenesis of BmKu70 in Bombyx mori.
    Ma S; Chang J; Wang X; Liu Y; Zhang J; Lu W; Gao J; Shi R; Zhao P; Xia Q
    Sci Rep; 2014 Mar; 4():4489. PubMed ID: 24671069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue-specific genome editing of laminA/C in the posterior silk glands of Bombyx mori.
    Liu Y; Ma S; Chang J; Zhang T; Wang X; Shi R; Zhang J; Lu W; Liu Y; Xia Q
    J Genet Genomics; 2017 Sep; 44(9):451-459. PubMed ID: 28967614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrated CRISPR Bombyx mori genome editing system with improved efficiency and expanded target sites.
    Ma S; Liu Y; Liu Y; Chang J; Zhang T; Wang X; Shi R; Lu W; Xia X; Zhao P; Xia Q
    Insect Biochem Mol Biol; 2017 Apr; 83():13-20. PubMed ID: 28189747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing.
    Mok BY; de Moraes MH; Zeng J; Bosch DE; Kotrys AV; Raguram A; Hsu F; Radey MC; Peterson SB; Mootha VK; Mougous JD; Liu DR
    Nature; 2020 Jul; 583(7817):631-637. PubMed ID: 32641830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplex genome editing using a dCas9-cytidine deaminase fusion in Streptomyces.
    Zhao Y; Tian J; Zheng G; Chen J; Sun C; Yang Z; Zimin AA; Jiang W; Deng Z; Wang Z; Lu Y
    Sci China Life Sci; 2020 Jul; 63(7):1053-1062. PubMed ID: 31872379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harnessing A3G for efficient and selective C-to-T conversion at C-rich sequences.
    Yu W; Li J; Huang S; Li X; Li P; Li G; Liang A; Chi T; Huang X
    BMC Biol; 2021 Feb; 19(1):34. PubMed ID: 33602235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-dCas9 Mediated Cytosine Deaminase Base Editing in
    Yu S; Price MA; Wang Y; Liu Y; Guo Y; Ni X; Rosser SJ; Bi C; Wang M
    ACS Synth Biol; 2020 Jul; 9(7):1781-1789. PubMed ID: 32551562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective gene editing by high-fidelity base editor 2 in mouse zygotes.
    Liang P; Sun H; Sun Y; Zhang X; Xie X; Zhang J; Zhang Z; Chen Y; Ding C; Xiong Y; Ma W; Liu D; Huang J; Songyang Z
    Protein Cell; 2017 Aug; 8(8):601-611. PubMed ID: 28585179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bombyx mori kynurenine 3-monooxygenase gene editing and insect molecular breeding using the clustered regularly interspaced short palindromic repeat/CRISPR associated protein 9 system.
    Hong JW; Jeong CY; Yu JH; Kim SB; Kang SK; Kim SW; Kim NS; Kim KY; Park JW
    Biotechnol Prog; 2020 Nov; 36(6):e3054. PubMed ID: 32706513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Off-Target Editing by CRISPR-Guided DNA Base Editors.
    Park S; Beal PA
    Biochemistry; 2019 Sep; 58(36):3727-3734. PubMed ID: 31433621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.