These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 29556184)
1. Suppressing Systemic Interference in fNIRS Monitoring of the Hemodynamic Cortical Response to Motor Execution and Imagery. Wu S; Li J; Gao L; Chen C; He S Front Hum Neurosci; 2018; 12():85. PubMed ID: 29556184 [TBL] [Abstract][Full Text] [Related]
2. Monitoring Local Regional Hemodynamic Signal Changes during Motor Execution and Motor Imagery Using Near-Infrared Spectroscopy. Iso N; Moriuchi T; Sagari A; Kitajima E; Iso F; Tanaka K; Kikuchi Y; Tabira T; Higashi T Front Physiol; 2015; 6():416. PubMed ID: 26793118 [TBL] [Abstract][Full Text] [Related]
3. Effective Connectivity of Cortical Sensorimotor Networks During Finger Movement Tasks: A Simultaneous fNIRS, fMRI, EEG Study. Anwar AR; Muthalib M; Perrey S; Galka A; Granert O; Wolff S; Heute U; Deuschl G; Raethjen J; Muthuraman M Brain Topogr; 2016 Sep; 29(5):645-60. PubMed ID: 27438589 [TBL] [Abstract][Full Text] [Related]
4. Spatio-temporal differences in brain oxygenation between movement execution and imagery: a multichannel near-infrared spectroscopy study. Wriessnegger SC; Kurzmann J; Neuper C Int J Psychophysiol; 2008 Jan; 67(1):54-63. PubMed ID: 18006099 [TBL] [Abstract][Full Text] [Related]
5. fMRI-based validation of continuous-wave fNIRS of supplementary motor area activation during motor execution and motor imagery. Klein F; Debener S; Witt K; Kranczioch C Sci Rep; 2022 Mar; 12(1):3570. PubMed ID: 35246563 [TBL] [Abstract][Full Text] [Related]
6. Classification of motor imagery and execution signals with population-level feature sets: implications for probe design in fNIRS based BCI. Erdoĝan SB; Özsarfati E; Dilek B; Kadak KS; Hanoĝlu L; Akın A J Neural Eng; 2019 Apr; 16(2):026029. PubMed ID: 30634177 [TBL] [Abstract][Full Text] [Related]
7. Brain Activation of Elite Race Walkers in Action Observation, Motor Imagery, and Motor Execution Tasks: A Pilot Study. Zhang Q; Zhang P; Song L; Yang Y; Yuan S; Chen Y; Sun S; Bai X Front Hum Neurosci; 2019; 13():80. PubMed ID: 30881297 [TBL] [Abstract][Full Text] [Related]
8. Functional near-infrared spectroscopy during motor imagery and motor execution in healthy adults. Zou Y; Li J; Fan Y; Zhang C; Kong Y Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2022 Jul; 47(7):920-927. PubMed ID: 36039589 [TBL] [Abstract][Full Text] [Related]
9. Motor imagery in response to fake feedback measured by functional near-infrared spectroscopy. Holper L; Wolf M Neuroimage; 2010 Mar; 50(1):190-7. PubMed ID: 20026278 [TBL] [Abstract][Full Text] [Related]
10. Task complexity relates to activation of cortical motor areas during uni- and bimanual performance: a functional NIRS study. Holper L; Biallas M; Wolf M Neuroimage; 2009 Jul; 46(4):1105-13. PubMed ID: 19306929 [TBL] [Abstract][Full Text] [Related]
11. Brain areas involved in the control of speed during a motor sequence of the foot: real movement versus mental imagery. Sauvage C; Jissendi P; Seignan S; Manto M; Habas C J Neuroradiol; 2013 Oct; 40(4):267-80. PubMed ID: 23433722 [TBL] [Abstract][Full Text] [Related]
12. Distinction of directional coupling in sensorimotor networks between active and passive finger movements using fNIRS. Lee SH; Jin SH; An J Biomed Opt Express; 2018 Jun; 9(6):2859-2870. PubMed ID: 30258695 [TBL] [Abstract][Full Text] [Related]
13. Using fMRI to investigate the potential cause of inverse oxygenation reported in fNIRS studies of motor imagery. Abdalmalak A; Milej D; Cohen DJ; Anazodo U; Ssali T; Diop M; Owen AM; St Lawrence K Neurosci Lett; 2020 Jan; 714():134607. PubMed ID: 31693928 [TBL] [Abstract][Full Text] [Related]
14. Changes in hemodynamic signals accompanying motor imagery and motor execution of swallowing: a near-infrared spectroscopy study. Kober SE; Wood G Neuroimage; 2014 Jun; 93 Pt 1():1-10. PubMed ID: 24576696 [TBL] [Abstract][Full Text] [Related]
15. Force related hemodynamic responses during execution and imagery of a hand grip task: A functional near infrared spectroscopy study. Wriessnegger SC; Kirchmeyr D; Bauernfeind G; Müller-Putz GR Brain Cogn; 2017 Oct; 117():108-116. PubMed ID: 28673464 [TBL] [Abstract][Full Text] [Related]
16. Ipsilateral involvement of primary motor cortex during motor imagery. Porro CA; Cettolo V; Francescato MP; Baraldi P Eur J Neurosci; 2000 Aug; 12(8):3059-63. PubMed ID: 10971647 [TBL] [Abstract][Full Text] [Related]
17. Brain effective connectivity during motor-imagery and execution following stroke and rehabilitation. Bajaj S; Butler AJ; Drake D; Dhamala M Neuroimage Clin; 2015; 8():572-82. PubMed ID: 26236627 [TBL] [Abstract][Full Text] [Related]
18. Greater corticostriatal activation associated with facial motor imagery compared with motor execution: a functional MRI study. Makary MM; Eun S; Park K Neuroreport; 2017 Jul; 28(10):610-617. PubMed ID: 28538517 [TBL] [Abstract][Full Text] [Related]
19. Task-related brain activity and functional connectivity in upper limb dystonia: a functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS) study. de Faria DD; Paulo AJM; Balardin J; Sato JR; Junior EA; Baltazar CA; Lucca RPD; Borges V; Silva SMCA; Ferraz HB; de Carvalho Aguiar P Neurophotonics; 2020 Oct; 7(4):045004. PubMed ID: 33094125 [No Abstract] [Full Text] [Related]
20. Comparison of Brain Activation during Motor Imagery and Motor Movement Using fNIRS. Batula AM; Mark JA; Kim YE; Ayaz H Comput Intell Neurosci; 2017; 2017():5491296. PubMed ID: 28546809 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]