These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

474 related articles for article (PubMed ID: 29556366)

  • 1. Bioactive Scaffolds for Regeneration of Cartilage and Subchondral Bone Interface.
    Deng C; Zhu H; Li J; Feng C; Yao Q; Wang L; Chang J; Wu C
    Theranostics; 2018; 8(7):1940-1955. PubMed ID: 29556366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printing of Mo-containing scaffolds with activated anabolic responses and bi-lineage bioactivities.
    Dang W; Wang X; Li J; Deng C; Liu Y; Yao Q; Wang L; Chang J; Wu C
    Theranostics; 2018; 8(16):4372-4392. PubMed ID: 30214627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper-incorporated bioactive glass-ceramics inducing anti-inflammatory phenotype and regeneration of cartilage/bone interface.
    Lin R; Deng C; Li X; Liu Y; Zhang M; Qin C; Yao Q; Wang L; Wu C
    Theranostics; 2019; 9(21):6300-6313. PubMed ID: 31534552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printing of a lithium-calcium-silicate crystal bioscaffold with dual bioactivities for osteochondral interface reconstruction.
    Chen L; Deng C; Li J; Yao Q; Chang J; Wang L; Wu C
    Biomaterials; 2019 Mar; 196():138-150. PubMed ID: 29643002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strontium/Silicon/Calcium-Releasing Hierarchically Structured 3D-Printed Scaffolds Accelerate Osteochondral Defect Repair.
    Li CJ; Park JH; Jin GS; Mandakhbayar N; Yeo D; Lee JH; Lee JH; Kim HS; Kim HW
    Adv Healthc Mater; 2024 Aug; 13(20):e2400154. PubMed ID: 38647029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-Printed Composite Bioceramic Scaffolds for Bone and Cartilage Integrated Regeneration.
    Xu N; Lu D; Qiang L; Liu Y; Yin D; Wang Z; Luo Y; Yang C; Ma Z; Ma H; Wang J
    ACS Omega; 2023 Oct; 8(41):37918-37926. PubMed ID: 37867636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration.
    Chen P; Zheng L; Wang Y; Tao M; Xie Z; Xia C; Gu C; Chen J; Qiu P; Mei S; Ning L; Shi Y; Fang C; Fan S; Lin X
    Theranostics; 2019; 9(9):2439-2459. PubMed ID: 31131046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Cartilage repair and subchondral bone reconstruction based on three-dimensional printing technique].
    Zhang W; Lian Q; Li D; Wang K; Jin Z; Bian W; Liu Y; He J; Wang L
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):318-24. PubMed ID: 24844012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects.
    Critchley S; Sheehy EJ; Cunniffe G; Diaz-Payno P; Carroll SF; Jeon O; Alsberg E; Brama PAJ; Kelly DJ
    Acta Biomater; 2020 Sep; 113():130-143. PubMed ID: 32505800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printing of Cobalt-Incorporated Chloroapatite Bioceramic Composite Scaffolds with Antioxidative Activity for Enhanced Osteochondral Regeneration.
    Shu C; Qin C; Wu A; Wang Y; Zhao C; Shi Z; Niu H; Chen J; Huang J; Zhang X; Huan Z; Chen L; Zhu M; Zhu Y
    Adv Healthc Mater; 2024 May; 13(13):e2303217. PubMed ID: 38363057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy.
    Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C
    Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silicate-based bioceramic scaffolds for dual-lineage regeneration of osteochondral defect.
    Bunpetch V; Zhang X; Li T; Lin J; Maswikiti EP; Wu Y; Cai D; Li J; Zhang S; Wu C; Ouyang H
    Biomaterials; 2019 Feb; 192():323-333. PubMed ID: 30468999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo evaluation of 3-dimensional polycaprolactone scaffolds for cartilage repair in rabbits.
    Martinez-Diaz S; Garcia-Giralt N; Lebourg M; Gómez-Tejedor JA; Vila G; Caceres E; Benito P; Pradas MM; Nogues X; Ribelles JL; Monllau JC
    Am J Sports Med; 2010 Mar; 38(3):509-19. PubMed ID: 20093424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-printed biphasic scaffolds for the simultaneous regeneration of osteochondral tissues.
    Natarajan ABM; Sivadas VPD; Nair PDPD
    Biomed Mater; 2021 Jul; 16(5):. PubMed ID: 34265754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Rabbit Model of Osteochondral Regeneration Using Three-Dimensional Printed Polycaprolactone-Hydroxyapatite Scaffolds Coated with Umbilical Cord Blood Mesenchymal Stem Cells and Chondrocytes.
    Zheng P; Hu X; Lou Y; Tang K
    Med Sci Monit; 2019 Oct; 25():7361-7369. PubMed ID: 31570688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect.
    Shao H; Ke X; Liu A; Sun M; He Y; Yang X; Fu J; Liu Y; Zhang L; Yang G; Xu S; Gou Z
    Biofabrication; 2017 Apr; 9(2):025003. PubMed ID: 28287077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nanozyme-functionalized bilayer hydrogel scaffold for modulating the inflammatory microenvironment to promote osteochondral regeneration.
    Hu C; Huang R; Xia J; Hu X; Xie D; Jin Y; Qi W; Zhao C; Hu Z
    J Nanobiotechnology; 2024 Jul; 22(1):445. PubMed ID: 39069607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro Chondrocyte Responses in Mg-doped Wollastonite/Hydrogel Composite Scaffolds for Osteochondral Interface Regeneration.
    Yu X; Zhao T; Qi Y; Luo J; Fang J; Yang X; Liu X; Xu T; Yang Q; Gou Z; Dai X
    Sci Rep; 2018 Dec; 8(1):17911. PubMed ID: 30559344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of a biphase composite scaffold and its application in tissue engineering for femoral osteochondral defects in rabbits.
    Ruan SQ; Yan L; Deng J; Huang WL; Jiang DM
    Int Orthop; 2017 Sep; 41(9):1899-1908. PubMed ID: 28616703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.
    Kim JA; Lim J; Naren R; Yun HS; Park EK
    Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.