These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29556429)

  • 21. Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc.
    Watanabe S; Kodaki T; Makino K
    J Biol Chem; 2005 Mar; 280(11):10340-9. PubMed ID: 15623532
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biochemical characterization and redesign of the coenzyme specificity of a novel monofunctional NAD
    Tang W; Dong X; Meng J; Feng Y; Xie M; Xu H; Song P
    Protein Expr Purif; 2021 Oct; 186():105909. PubMed ID: 34022392
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rational Engineering of Formate Dehydrogenase Substrate/Cofactor Affinity for Better Performance in NADPH Regeneration.
    Jiang HW; Chen Q; Pan J; Zheng GW; Xu JH
    Appl Biochem Biotechnol; 2020 Oct; 192(2):530-543. PubMed ID: 32405732
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Promising properties of a formate dehydrogenase from a methanol-assimilating yeast Ogataea parapolymorpha DL-1 in His-tagged form.
    Yu S; Zhu L; Zhou C; An T; Zhang T; Jiang B; Mu W
    Appl Microbiol Biotechnol; 2014 Feb; 98(4):1621-30. PubMed ID: 23715855
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of the nicotinamide adenine dinucleotides (NAD
    Wang P; Chen X; Yang J; Pei Y; Bian M; Zhu G
    Biochimie; 2019 May; 160():148-155. PubMed ID: 30876971
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase.
    Berríos-Rivera SJ; Bennett GN; San KY
    Metab Eng; 2002 Jul; 4(3):217-29. PubMed ID: 12616691
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of ala198 in the stability and coenzyme specificity of bacterial formate dehydrogenases.
    Alekseeva AA; Fedorchuk VV; Zarubina SA; Sadykhov EG; Matorin AD; Savin SS; Tishkov VI
    Acta Naturae; 2015; 7(1):60-9. PubMed ID: 25927002
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improving the purification of NAD+-dependent formate dehydrogenase from Candida methylica.
    Ordu EB; Karagüler NG
    Prep Biochem Biotechnol; 2007; 37(4):333-41. PubMed ID: 17849288
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Switching the Cofactor Preference of Formate Dehydrogenase to Develop an NADPH-Dependent Biocatalytic System for Synthesizing Chiral Amino Acids.
    Cheng F; Wei L; Wang CJ; Liang XH; Xu YQ; Xue YP; Zheng YG
    J Agric Food Chem; 2023 Jun; 71(23):9009-9019. PubMed ID: 37265255
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NAD (+) -dependent Formate Dehydrogenase from Plants.
    Alekseeva AA; Savin SS; Tishkov VI
    Acta Naturae; 2011 Oct; 3(4):38-54. PubMed ID: 22649703
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A high catalytic efficiency and chemotolerant formate dehydrogenase from Bacillus simplex.
    Boonkumkrong R; Chunthaboon P; Munkajohnpong P; Watthaisong P; Pimviriyakul P; Maenpuen S; Chaiyen P; Tinikul R
    Biotechnol J; 2024 Jan; 19(1):e2300330. PubMed ID: 38180313
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microbial surface displaying formate dehydrogenase and its application in optical detection of formate.
    Liu A; Feng R; Liang B
    Enzyme Microb Technol; 2016 Sep; 91():59-65. PubMed ID: 27444330
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein Engineering of the Soluble Metal-dependent Formate Dehydrogenase from Escherichia coli.
    Fuji R; Umezawa K; Mizuguchi M; Ihara M
    Anal Sci; 2021 May; 37(5):733-739. PubMed ID: 33455969
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Metal Ions on the Activity of Ten NAD-Dependent Formate Dehydrogenases.
    Bulut H; Valjakka J; Yuksel B; Yilmazer B; Turunen O; Binay B
    Protein J; 2020 Oct; 39(5):519-530. PubMed ID: 33043425
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Change in Cofactor Specificity of Oxidoreductases by Adaptive Evolution of an Escherichia coli NADPH-Auxotrophic Strain.
    Bouzon M; Döring V; Dubois I; Berger A; Stoffel GMM; Calzadiaz Ramirez L; Meyer SN; Fouré M; Roche D; Perret A; Erb TJ; Bar-Even A; Lindner SN
    mBio; 2021 Aug; 12(4):e0032921. PubMed ID: 34399608
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD(+)-dependent formate dehydrogenase.
    Balzer GJ; Thakker C; Bennett GN; San KY
    Metab Eng; 2013 Nov; 20():1-8. PubMed ID: 23876411
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Whole-cell bioreduction of aromatic alpha-keto esters using Candida tenuis xylose reductase and Candida boidinii formate dehydrogenase co-expressed in Escherichia coli.
    Kratzer R; Pukl M; Egger S; Nidetzky B
    Microb Cell Fact; 2008 Dec; 7():37. PubMed ID: 19077192
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of the NAD+ binding site of Candida boidinii formate dehydrogenase by affinity labelling and site-directed mutagenesis.
    Labrou NE; Rigden DJ; Clonis YD
    Eur J Biochem; 2000 Nov; 267(22):6657-64. PubMed ID: 11054119
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural insights into the NAD
    Yilmazer B; Isupov MN; De Rose SA; Bulut H; Benninghoff JC; Binay B; Littlechild JA
    J Struct Biol; 2020 Dec; 212(3):107657. PubMed ID: 33148525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of catalysis, substrate, and coenzyme binding sites and improvement catalytic efficiency of formate dehydrogenase from Candida boidinii.
    Jiang W; Lin P; Yang R; Fang B
    Appl Microbiol Biotechnol; 2016 Oct; 100(19):8425-37. PubMed ID: 27198726
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.