These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 29556951)

  • 1. Mechanic stress generated by a time-varying electromagnetic field on bone surface.
    Ye H
    Med Biol Eng Comput; 2018 Oct; 56(10):1793-1805. PubMed ID: 29556951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical and electrical interactions in bone remodeling.
    Spadaro JA
    Bioelectromagnetics; 1997; 18(3):193-202. PubMed ID: 9096837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new software tool (VA-BATTS) to calculate bending, axial, torsional and transverse shear stresses within bone cross sections having inhomogeneous material properties.
    Kourtis LC; Carter DR; Kesari H; Beaupre GS
    Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):463-76. PubMed ID: 19230145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of strain and fluid shear stress in stimulating bone cell responses--a computational and experimental study.
    McGarry JG; Klein-Nulend J; Mullender MG; Prendergast PJ
    FASEB J; 2005 Mar; 19(3):482-4. PubMed ID: 15625080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hypothetical mechanism of bone remodeling and modeling under electromagnetic loads.
    Qu C; Qin QH; Kang Y
    Biomaterials; 2006 Jul; 27(21):4050-7. PubMed ID: 16574223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical metrology methods for mechanical testing of whole bones.
    Barak MM; Sharir A; Shahar R
    Vet J; 2009 Apr; 180(1):7-14. PubMed ID: 18291692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical analysis of the shear behaviour adjacent to an axially loaded implant.
    Swider P; Pedrono A; Mouzin O; Søballe K; Bechtold JE
    J Biomech; 2006; 39(10):1873-82. PubMed ID: 16038917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical and biophysical environment of bone from the macroscopic to the pericellular and molecular level.
    Ren L; Yang P; Wang Z; Zhang J; Ding C; Shang P
    J Mech Behav Biomed Mater; 2015 Oct; 50():104-22. PubMed ID: 26119589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orbital stress analysis, Part IV: Use of a "stiffness-graded" biodegradable implants to repair orbital blow-out fracture.
    Al-Sukhun J; Penttilä H; Ashammakhi N
    J Craniofac Surg; 2012 Jan; 23(1):126-30. PubMed ID: 22337388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proposal for the regulatory mechanism of Wolff's law.
    Mullender MG; Huiskes R
    J Orthop Res; 1995 Jul; 13(4):503-12. PubMed ID: 7674066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanical and stress adaptive properties of bone.
    Cowin SC
    Ann Biomed Eng; 1983; 11(3-4):263-95. PubMed ID: 6670786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone composition and healing: open electromagnetic and biomechanical problems.
    Biggane P; Jackson X; Nazarian A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6026-6029. PubMed ID: 28269626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of osteogenic index, octahedral shear stress and dilatational stress in the ossification of a fracture callus.
    Gardner TN; Mishra S; Marks L
    Med Eng Phys; 2004 Jul; 26(6):493-501. PubMed ID: 15234685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of electromagnetic fields in experimental fracture repair.
    Otter MW; McLeod KJ; Rubin CT
    Clin Orthop Relat Res; 1998 Oct; (355 Suppl):S90-104. PubMed ID: 9917630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A noncontacting electromagnetic device for the determination of in vivo properties of bone.
    Lakes RS; Saha S
    Med Instrum; 1978; 12(2):106-9. PubMed ID: 683032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of high-frequency cyclical stimulation on the bone fracture-healing process: mathematical and experimental models.
    Gómez-Benito MJ; González-Torres LA; Reina-Romo E; Grasa J; Seral B; García-Aznar JM
    Philos Trans A Math Phys Eng Sci; 2011 Nov; 369(1954):4278-94. PubMed ID: 21969676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow velocity-driven differentiation of human mesenchymal stromal cells in silk fibroin scaffolds: A combined experimental and computational approach.
    Vetsch JR; Betts DC; Müller R; Hofmann S
    PLoS One; 2017; 12(7):e0180781. PubMed ID: 28686698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical strength of trabecular bone at the knee.
    Hvid I
    Dan Med Bull; 1988 Aug; 35(4):345-65. PubMed ID: 3048922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone strength in children: understanding basic bone biomechanics.
    Forestier-Zhang L; Bishop N
    Arch Dis Child Educ Pract Ed; 2016 Feb; 101(1):2-7. PubMed ID: 26269494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging of tissue structures and mechanical analysis.
    Niederer PF
    Stud Health Technol Inform; 2008; 133():183-95. PubMed ID: 18376026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.