BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29557164)

  • 1. Hand-Held Volatilome Analyzer Based on Elastically Deformable Nanofibers.
    Yucel M; Akin O; Cayoren M; Akduman I; Palaniappan A; Liedberg B; Hizal G; Inci F; Yildiz UH
    Anal Chem; 2018 Apr; 90(8):5122-5129. PubMed ID: 29557164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensors for Enhanced Detection of Acetone as a Potential Tool for Noninvasive Diabetes Monitoring.
    Rydosz A
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30012960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Au-modified three-dimensional In₂O₃ inverse opals: synthesis and improved performance for acetone sensing toward diagnosis of diabetes.
    Xing R; Li Q; Xia L; Song J; Xu L; Zhang J; Xie Y; Song H
    Nanoscale; 2015 Aug; 7(30):13051-60. PubMed ID: 26172336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalyst-loaded porous WO3 nanofibers using catalyst-decorated polystyrene colloid templates for detection of biomarker molecules.
    Choi SJ; Kim SJ; Koo WT; Cho HJ; Kim ID
    Chem Commun (Camb); 2015 Feb; 51(13):2609-12. PubMed ID: 25572467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva.
    Amann A; Costello Bde L; Miekisch W; Schubert J; Buszewski B; Pleil J; Ratcliffe N; Risby T
    J Breath Res; 2014 Sep; 8(3):034001. PubMed ID: 24946087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental setup and analytical methods for the non-invasive determination of volatile organic compounds, formaldehyde and NOx in exhaled human breath.
    Riess U; Tegtbur U; Fauck C; Fuhrmann F; Markewitz D; Salthammer T
    Anal Chim Acta; 2010 Jun; 669(1-2):53-62. PubMed ID: 20510903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel Self-Assembly Route Assisted Ultra-Fast Trace Volatile Organic Compounds Gas Sensing Based on Three-Dimensional Opal Microspheres Composites for Diabetes Diagnosis.
    Wang T; Zhang S; Yu Q; Wang S; Sun P; Lu H; Liu F; Yan X; Lu G
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32913-32921. PubMed ID: 30176721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MEMS sensor array-based electronic nose for breath analysis-a simulation study.
    Gupta A; Singh TS; Yadava RDS
    J Breath Res; 2018 Oct; 13(1):016003. PubMed ID: 30045999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective diagnosis of diabetes using Pt-functionalized WO3 hemitube networks as a sensing layer of acetone in exhaled breath.
    Choi SJ; Lee I; Jang BH; Youn DY; Ryu WH; Park CO; Kim ID
    Anal Chem; 2013 Feb; 85(3):1792-6. PubMed ID: 23252728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective detection of acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO(2) nanofibers functionalized with reduced graphene oxide nanosheets.
    Choi SJ; Jang BH; Lee SJ; Min BK; Rothschild A; Kim ID
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2588-97. PubMed ID: 24456186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water-Resistant Polymeric Acid Membrane Catalyst for Acetone Detection in the Exhaled Breath of Diabetics.
    Worrall AD; Qian Z; Bernstein JA; Angelopoulos AP
    Anal Chem; 2018 Feb; 90(3):1819-1826. PubMed ID: 29280625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospun polystyrene/graphene nanofiber film as a novel adsorbent of thin film microextraction for extraction of aldehydes in human exhaled breath condensates.
    Huang J; Deng H; Song D; Xu H
    Anal Chim Acta; 2015 Jun; 878():102-8. PubMed ID: 26002331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanowire Array Breath Acetone Sensor for Diabetes Monitoring.
    Wei S; Li Z; Murugappan K; Li Z; Lysevych M; Vora K; Tan HH; Jagadish C; Karawdeniya BI; Nolan CJ; Tricoli A; Fu L
    Adv Sci (Weinh); 2024 May; 11(19):e2309481. PubMed ID: 38477429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Si:WO(3) Sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis.
    Righettoni M; Tricoli A; Pratsinis SE
    Anal Chem; 2010 May; 82(9):3581-7. PubMed ID: 20380475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid Analytical Platform Based on Field-Asymmetric Ion Mobility Spectrometry, Infrared Sensing, and Luminescence-Based Oxygen Sensing for Exhaled Breath Analysis.
    Hagemann LT; Repp S; Mizaikoff B
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31212768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A prototype portable breath acetone analyzer for monitoring fat loss.
    Toyooka T; Hiyama S; Yamada Y
    J Breath Res; 2013 Sep; 7(3):036005. PubMed ID: 23883482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of membrane extraction with sorbent interface for breath analysis.
    Ma V; Lord H; Morley M; Pawliszyn J
    Methods Mol Biol; 2010; 610():451-68. PubMed ID: 20013195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CuMoO
    Mathur M; Verma A; Singh A; Yadav BC; Chaudhary V
    Environ Res; 2023 Jul; 229():115931. PubMed ID: 37076034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential of breath and skin analysis for monitoring blood glucose concentration in diabetes.
    Turner C
    Expert Rev Mol Diagn; 2011 Jun; 11(5):497-503. PubMed ID: 21707458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical sensor system for breath analysis of aldehydes, CO and NO.
    Obermeier J; Trefz P; Wex K; Sabel B; Schubert JK; Miekisch W
    J Breath Res; 2015 Mar; 9(1):016008. PubMed ID: 25749754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.