BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 29557386)

  • 1. Electrical stimulation promotes functional recovery after spinal cord injury by activating endogenous spinal cord-derived neural stem/progenitor cell: an in vitro and in vivo study.
    Bang WS; Han I; Mun SA; Hwang JM; Noh SH; Son W; Cho DC; Kim BJ; Kim CH; Choi H; Kim KT
    Spine J; 2024 Mar; 24(3):534-553. PubMed ID: 37871660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined transcriptomics and proteomics studies on the effect of electrical stimulation on spinal cord injury in rats.
    Li E; Yan R; Qiao H; Sun J; Zou P; Chang J; Li S; Ma Q; Zhang R; Liao B
    Heliyon; 2024 Jan; 10(1):e23960. PubMed ID: 38226269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epidural combined optical and electrical stimulation induces high-specificity activation of target muscles in spinal cord injured rats.
    Guo XJ; Zhao Z; Chang JQ; He LW; Su WN; Feng T; Zhao C; Xu M; Rao JS
    Front Neurosci; 2023; 17():1282558. PubMed ID: 38027482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PEG-chitosan (Neuro-PEG) induced restoration of motor function after complete transection of the dorsal spinal cord in swine. A pilot study.
    Lebenstein-Gumovski M; Zharchenko A; Rasueva T; Bashahanov R; Kovalev DA; Zhirov A; Shatokhin A; Grin A
    Surg Neurol Int; 2023; 14():424. PubMed ID: 38213450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conductive Hydrogel Restores Electrical Conduction to Promote Neurological Recovery in a Rat Model.
    Zhang Y; Yao A; Wu J; Li S; Wang M; Peng Z; Sung HW; Jiang B; Li RK
    Tissue Eng Part A; 2024 May; ():. PubMed ID: 38661545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperbaric oxygen therapy combined with Schwann cell transplantation promotes spinal cord injury recovery.
    Peng CG; Zhang SQ; Wu MF; Lv Y; Wu DK; Yang Q; Gu R
    Neural Regen Res; 2015 Sep; 10(9):1477-82. PubMed ID: 26604910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electromagnetic Cellularized Patch with Wirelessly Electrical Stimulation for Promoting Neuronal Differentiation and Spinal Cord Injury Repair.
    Wang L; Zhao H; Han M; Yang H; Lei M; Wang W; Li K; Li Y; Sang Y; Xin T; Liu H; Qiu J
    Adv Sci (Weinh); 2024 Jun; ():e2307527. PubMed ID: 38868910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of the dynamic model of SCI rehabilitation using bidirectional stimulation and its application in rehabilitating with BCI.
    Cui Z; Lin J; Fu X; Zhang S; Li P; Wu X; Wang X; Chen W; Zhu S; Li Y
    Cogn Neurodyn; 2023 Feb; 17(1):169-181. PubMed ID: 36704625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Case report: Virtual reality-based arm and leg cycling combined with transcutaneous electrical spinal cord stimulation for early treatment of a cervical spinal cord injured patient.
    Chu X; Liu S; Zhao X; Liu T; Xing Z; Li Q; Li Q
    Front Neurosci; 2024; 18():1380467. PubMed ID: 38826775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal modifications in bone following spinal cord injury in rats.
    Medalha CC; Amorim BO; Fernandes KR; Pereira RM; Renno AC; Ribeiro DA
    Arch Med Sci; 2012 Dec; 8(6):1102-7. PubMed ID: 23319988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bridging the gap: Spinal cord fusion as a treatment of chronic spinal cord injury.
    Ren X; Kim CY; Canavero S
    Surg Neurol Int; 2019; 10():51. PubMed ID: 31528389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal cord fusion with PEG-GNRs (TexasPEG): Neurophysiological recovery in 24 hours in rats.
    Kim CY; Sikkema WK; Hwang IK; Oh H; Kim UJ; Lee BH; Tour JM
    Surg Neurol Int; 2016; 7(Suppl 24):S632-6. PubMed ID: 27656326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in Conductive Hydrogel for Spinal Cord Injury Repair and Regeneration.
    Qin C; Qi Z; Pan S; Xia P; Kong W; Sun B; Du H; Zhang R; Zhu L; Zhou D; Yang X
    Int J Nanomedicine; 2023; 18():7305-7333. PubMed ID: 38084124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioelectric Potential in Next-Generation Organoids: Electrical Stimulation to Enhance 3D Structures of the Central Nervous System.
    O'Hara-Wright M; Mobini S; Gonzalez-Cordero A
    Front Cell Dev Biol; 2022; 10():901652. PubMed ID: 35656553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical Stimulation Promotes Stem Cell Neural Differentiation in Tissue Engineering.
    Cheng H; Huang Y; Yue H; Fan Y
    Stem Cells Int; 2021; 2021():6697574. PubMed ID: 33968150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epidural Stimulation Combined with Triple Gene Therapy for Spinal Cord Injury Treatment.
    Islamov R; Bashirov F; Fadeev F; Shevchenko R; Izmailov A; Markosyan V; Sokolov M; Kuznetsov M; Davleeva M; Garifulin R; Salafutdinov I; Nurullin L; Chelyshev Y; Lavrov I
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33255323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Markerless Rat Behavior Quantification With Cascade Neural Network.
    Jin T; Duan F; Yang Z; Yin S; Chen X; Liu Y; Yao Q; Jian F
    Front Neurorobot; 2020; 14():570313. PubMed ID: 33192436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of electrical stimulation on neural regeneration
    Joo MC; Jang CH; Park JT; Choi SW; Ro S; Kim MS; Lee MY
    Neural Regen Res; 2018 Feb; 13(2):340-346. PubMed ID: 29557386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of motor function induced by skeletal muscle contraction in spinal cord-injured rats.
    Hayashi N; Himi N; Nakamura-Maruyama E; Okabe N; Sakamoto I; Hasegawa T; Miyamoto O
    Spine J; 2019 Jun; 19(6):1094-1105. PubMed ID: 30583107
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.