These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

471 related articles for article (PubMed ID: 29557508)

  • 1. Computational study of radial particle migration and stresslet distributions in particle-laden turbulent pipe flow.
    Gupta A; Clercx HJH; Toschi F
    Eur Phys J E Soft Matter; 2018 Mar; 41(3):34. PubMed ID: 29557508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of particle shape on fluid statistics and particle dynamics in turbulent pipe flow.
    Gupta A; Clercx HJH; Toschi F
    Eur Phys J E Soft Matter; 2018 Oct; 41(10):116. PubMed ID: 30269258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of particle-fluid density ratio on the interactions between the turbulent channel flow and finite-size particles.
    Yu Z; Lin Z; Shao X; Wang LP
    Phys Rev E; 2017 Sep; 96(3-1):033102. PubMed ID: 29346864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laminar, turbulent, and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions.
    Lashgari I; Picano F; Breugem WP; Brandt L
    Phys Rev Lett; 2014 Dec; 113(25):254502. PubMed ID: 25554885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-fluid approach for direct numerical simulation of particle-laden turbulent flows at small Stokes numbers.
    Shotorban B; Balachandar S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056703. PubMed ID: 19518589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical and Experimental Investigations of Horizontal Turbulent Particle-Liquid Pipe Flow.
    Yang Z; Savari C; Barigou M
    Ind Eng Chem Res; 2022 Aug; 61(32):12040-12051. PubMed ID: 35996457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle deposition and fluid flow characteristics in turbulent corrugated pipe flow using Eulerian-Lagrangian approach.
    Sakib MN; Shuvo MS; Rahman R; Saha S
    Heliyon; 2023 Mar; 9(3):e14603. PubMed ID: 36967929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct numerical simulation of turbulent boundary layer with fully resolved particles at low volume fraction.
    Luo K; Hu C; Wu F; Fan J
    Phys Fluids (1994); 2017 May; 29(5):053301. PubMed ID: 29104418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical study of laminar-turbulent transition in particle-laden channel flow.
    Klinkenberg J; Sardina G; de Lange HC; Brandt L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043011. PubMed ID: 23679517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional lattice Boltzmann simulation of colloid migration in rough-walled narrow flow channels.
    Başağaoğlu H; Meakin P; Succi S; Redden GR; Ginn TR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031405. PubMed ID: 18517379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Universal Scaling Laws for Dense Particle Suspensions in Turbulent Wall-Bounded Flows.
    Costa P; Picano F; Brandt L; Breugem WP
    Phys Rev Lett; 2016 Sep; 117(13):134501. PubMed ID: 27715124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Turbulent transport and mixing in transitional Rayleigh-Taylor unstable flow: A priori assessment of gradient-diffusion and similarity modeling.
    Schilling O; Mueschke NJ
    Phys Rev E; 2017 Dec; 96(6-1):063111. PubMed ID: 29347290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exact regularized point particle (ERPP) method for particle-laden wall-bounded flows in the two-way coupling regime.
    Battista F; Mollicone JP; Gualtieri P; Messina R; Casciola CM
    J Fluid Mech; 2019 Nov; 878():420-444. PubMed ID: 32879533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Point-Particle DNS and LES of Particle-Laden Turbulent flow - a state-of-the-art review.
    M Kuerten JG
    Flow Turbul Combust; 2016; 97(3):689-713. PubMed ID: 30174544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of particle-fluid density ratio on the dynamics of finite-size particles in homogeneous isotropic turbulent flows.
    Shen J; Lu Z; Wang LP; Peng C
    Phys Rev E; 2021 Aug; 104(2-2):025109. PubMed ID: 34525650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation on coherent vortex structures by dispersed solid particles in a three-dimensional mixing layer.
    Fan J; Luo K; Zheng Y; Jin H; Cen K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036309. PubMed ID: 14524892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of particles on the transition to turbulence in pipe flow.
    Matas JP; Morris JF; Guazzelli E
    Philos Trans A Math Phys Eng Sci; 2003 May; 361(1806):911-9. PubMed ID: 12804221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous Eulerian-Lagrangian velocity measurements of particulate pipe flow in transitional regime.
    Singh S; Pothérat A; Pringle CCT; Bates IRJ; Holdsworth M
    Rev Sci Instrum; 2020 Sep; 91(9):095110. PubMed ID: 33003812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Velocity-gradient statistics along particle trajectories in turbulent flows: the refined similarity hypothesis in the Lagrangian frame.
    Benzi R; Biferale L; Calzavarini E; Lohse D; Toschi F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066318. PubMed ID: 20365278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the Formulation of Lagrangian Stochastic Models for Heavy-Particle Trajectories.
    Reynolds AM
    J Colloid Interface Sci; 2000 Dec; 232(2):260-268. PubMed ID: 11097759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.