These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 29557586)

  • 1. Flexible robotic catheters in the visceral segment of the aorta: advantages and limitations.
    Li MM; Hamady MS; Bicknell CD; Riga CV
    J Cardiovasc Surg (Torino); 2018 Jun; 59(3):317-321. PubMed ID: 29557586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robotically-steerable catheters and their role in the visceral aortic segment.
    Riga C; Bicknell C; Hamady MS; Cheshire NJ
    J Cardiovasc Surg (Torino); 2011 Jun; 52(3):353-62. PubMed ID: 21577190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of robotic endovascular catheters for arch vessel cannulation.
    Riga CV; Bicknell CD; Hamady MS; Cheshire NJ
    J Vasc Surg; 2011 Sep; 54(3):799-809. PubMed ID: 21620623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility and safety of renal and visceral target vessel cannulation using robotically steerable catheters during complex endovascular aortic procedures.
    Cochennec F; Kobeiter H; Gohel M; Marzelle J; Desgranges P; Allaire E; Becquemin JP
    J Endovasc Ther; 2015 Apr; 22(2):187-93. PubMed ID: 25809359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of robotic endovascular catheters in fenestrated stent grafting.
    Riga CV; Cheshire NJ; Hamady MS; Bicknell CD
    J Vasc Surg; 2010 Apr; 51(4):810-9; discussion 819-20. PubMed ID: 20347674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing contact forces in the arch and supra-aortic vessels using the Magellan robot.
    Rafii-Tari H; Riga CV; Payne CJ; Hamady MS; Cheshire NJ; Bicknell CD; Yang GZ
    J Vasc Surg; 2016 Nov; 64(5):1422-1432. PubMed ID: 26386511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electromagnetic tracking of flexible robotic catheters enables "assisted navigation" and brings automation to endovascular navigation in an in vitro study.
    Schwein A; Kramer B; Chinnadurai P; Virmani N; Walker S; O'Malley M; Lumsden AB; Bismuth J
    J Vasc Surg; 2018 Apr; 67(4):1274-1281. PubMed ID: 28583735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tortuous iliac systems--a significant burden to conventional cannulation in the visceral segment: is there a role for robotic catheter technology?
    Riga CV; Bicknell CD; Hamady M; Cheshire N
    J Vasc Interv Radiol; 2012 Oct; 23(10):1369-75. PubMed ID: 22920731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible robotics in pelvic disease: does the catheter increase applicability of embolic therapy?
    Rueda MA; Riga C; Hamady MS
    J Cardiovasc Surg (Torino); 2018 Jun; 59(3):322-327. PubMed ID: 29430891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical applications of robotic technology in vascular and endovascular surgery.
    Antoniou GA; Riga CV; Mayer EK; Cheshire NJ; Bicknell CD
    J Vasc Surg; 2011 Feb; 53(2):493-9. PubMed ID: 20801611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robot-assisted fenestrated endovascular aneurysm repair (FEVAR) using the Magellan system.
    Riga CV; Bicknell CD; Rolls A; Cheshire NJ; Hamady MS
    J Vasc Interv Radiol; 2013 Feb; 24(2):191-6. PubMed ID: 23369555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current state in tracking and robotic navigation systems for application in endovascular aortic aneurysm repair.
    de Ruiter QM; Moll FL; van Herwaarden JA
    J Vasc Surg; 2015 Jan; 61(1):256-64. PubMed ID: 25441011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of a remotely steerable "robotic" catheter in a branched endovascular aortic graft.
    Carrell T; Dastur N; Salter R; Taylor P
    J Vasc Surg; 2012 Jan; 55(1):223-5. PubMed ID: 21958562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robotic Arch Catheter Placement Reduces Cerebral Embolization During Thoracic Endovascular Aortic Repair (TEVAR).
    Perera AH; Riga CV; Monzon L; Gibbs RG; Bicknell CD; Hamady M
    Eur J Vasc Endovasc Surg; 2017 Mar; 53(3):362-369. PubMed ID: 28214128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robotic endovascular surgery.
    Au S; Ko K; Tsang J; Chan YC
    Asian Cardiovasc Thorac Ann; 2014 Jan; 22(1):110-4. PubMed ID: 24585662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A first-in-man study of the role of flexible robotics in overcoming navigation challenges in the iliofemoral arteries.
    Bismuth J; Duran C; Stankovic M; Gersak B; Lumsden AB
    J Vasc Surg; 2013 Feb; 57(2 Suppl):14S-9S. PubMed ID: 23336849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current and emerging robot-assisted endovascular catheterization technologies: a review.
    Rafii-Tari H; Payne CJ; Yang GZ
    Ann Biomed Eng; 2014 Apr; 42(4):697-715. PubMed ID: 24281653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transradial access for peripheral vascular interventions.
    Staniloae CS; Korabathina R; Coppola JT
    Catheter Cardiovasc Interv; 2013 Jun; 81(7):1194-203. PubMed ID: 22899648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robotic aortic surgery.
    Duran C; Kashef E; El-Sayed HF; Bismuth J
    Methodist Debakey Cardiovasc J; 2011; 7(3):32-4. PubMed ID: 21979124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current status of endovascular catheter robotics.
    Lumsden AB; Bismuth J
    J Cardiovasc Surg (Torino); 2018 Jun; 59(3):310-316. PubMed ID: 29480668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.