These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 29558137)

  • 21. Fragment Molecular Orbital method-based Molecular Dynamics (FMO-MD) as a simulator for chemical reactions in explicit solvation.
    Komeiji Y; Ishikawa T; Mochizuki Y; Yamataka H; Nakano T
    J Comput Chem; 2009 Jan; 30(1):40-50. PubMed ID: 18504778
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Continuum molecular electrostatics, salt effects, and counterion binding--a review of the Poisson-Boltzmann theory and its modifications.
    Grochowski P; Trylska J
    Biopolymers; 2008 Feb; 89(2):93-113. PubMed ID: 17969016
    [TBL] [Abstract][Full Text] [Related]  

  • 23. p
    Aleksandrov A; Roux B; MacKerell AD
    J Chem Theory Comput; 2020 Jul; 16(7):4655-4668. PubMed ID: 32464053
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Converging free energy estimates: MM-PB(GB)SA studies on the protein-protein complex Ras-Raf.
    Gohlke H; Case DA
    J Comput Chem; 2004 Jan; 25(2):238-50. PubMed ID: 14648622
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of Poisson solvation models using a hybrid explicit/implicit solvent method.
    Lee MS; Olson MA
    J Phys Chem B; 2005 Mar; 109(11):5223-36. PubMed ID: 16863188
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of the MSMS and NanoShaper molecular surface triangulation codes in the TABI Poisson-Boltzmann solver.
    Wilson L; Krasny R
    J Comput Chem; 2021 Aug; 42(22):1552-1560. PubMed ID: 34041777
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrostatic free energy and its variations in implicit solvent models.
    Che J; Dzubiella J; Li B; McCammon JA
    J Phys Chem B; 2008 Mar; 112(10):3058-69. PubMed ID: 18275182
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relative complexation energies for Li(+) ion in solution: molecular level solvation versus polarizable continuum model study.
    Eilmes A; Kubisiak P
    J Phys Chem A; 2010 Jan; 114(2):973-9. PubMed ID: 20030307
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Small molecule solvation changes due to the presence of salt are governed by the cost of solvent cavity formation and dispersion.
    Li L; Fennell CJ; Dill KA
    J Chem Phys; 2014 Dec; 141(22):22D518. PubMed ID: 25494789
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Implicit Solvents for the Polarizable Atomic Multipole AMOEBA Force Field.
    Corrigan RA; Qi G; Thiel AC; Lynn JR; Walker BD; Casavant TL; Lagardere L; Piquemal JP; Ponder JW; Ren P; Schnieders MJ
    J Chem Theory Comput; 2021 Apr; 17(4):2323-2341. PubMed ID: 33769814
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Features of CPB: a Poisson-Boltzmann solver that uses an adaptive Cartesian grid.
    Fenley MO; Harris RC; Mackoy T; Boschitsch AH
    J Comput Chem; 2015 Feb; 36(4):235-43. PubMed ID: 25430617
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Taking Water into Account with the Fragment Molecular Orbital Method.
    Okiyama Y; Fukuzawa K; Komeiji Y; Tanaka S
    Methods Mol Biol; 2020; 2114():105-122. PubMed ID: 32016889
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energetic decomposition with the generalized-born and Poisson-Boltzmann solvent models: lessons from association of G-protein components.
    Carrascal N; Green DF
    J Phys Chem B; 2010 Apr; 114(15):5096-116. PubMed ID: 20355699
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nonuniform charge scaling (NUCS): a practical approximation of solvent electrostatic screening in proteins.
    Schwarzl SM; Huang D; Smith JC; Fischer S
    J Comput Chem; 2005 Oct; 26(13):1359-71. PubMed ID: 16021598
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calculating solvation energies by means of a fluctuating charge model combined with continuum solvent model.
    Zhao DX; Yu L; Gong LD; Liu C; Yang ZZ
    J Chem Phys; 2011 May; 134(19):194115. PubMed ID: 21599052
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DFT-based linear solvation energy relationships for the infrared spectral shifts of acetone in polar and nonpolar organic solvents.
    Chang CM
    J Phys Chem A; 2008 Mar; 112(11):2482-8. PubMed ID: 18284222
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Charging free energy calculations using the Generalized Solvent Boundary Potential (GSBP) and periodic boundary condition: a comparative analysis using ion solvation and oxidation free energy in proteins.
    Lu X; Cui Q
    J Phys Chem B; 2013 Feb; 117(7):2005-18. PubMed ID: 23347181
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Trypsin-ligand binding free energies from explicit and implicit solvent simulations with polarizable potential.
    Jiao D; Zhang J; Duke RE; Li G; Schnieders MJ; Ren P
    J Comput Chem; 2009 Aug; 30(11):1701-11. PubMed ID: 19399779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Implicit solvent methods for free energy estimation.
    Decherchi S; Masetti M; Vyalov I; Rocchia W
    Eur J Med Chem; 2015 Feb; 91():27-42. PubMed ID: 25193298
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.