These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 29558472)

  • 41. Polyphenol-rich blackcurrant extract prevents inflammation in diet-induced obese mice.
    Benn T; Kim B; Park YK; Wegner CJ; Harness E; Nam TG; Kim DO; Lee JS; Lee JY
    J Nutr Biochem; 2014 Oct; 25(10):1019-25. PubMed ID: 25034502
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Diet-induced obesity elevates colonic TNF-α in mice and is accompanied by an activation of Wnt signaling: a mechanism for obesity-associated colorectal cancer.
    Liu Z; Brooks RS; Ciappio ED; Kim SJ; Crott JW; Bennett G; Greenberg AS; Mason JB
    J Nutr Biochem; 2012 Oct; 23(10):1207-13. PubMed ID: 22209007
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chk2 deficiency alleviates irradiation-induced taste dysfunction by inhibiting p53-dependent apoptosis.
    Yuan Z; Ma J; Meng X; Chen N; Shen M
    Oral Dis; 2018 Jul; 24(5):856-863. PubMed ID: 29292572
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Gustatory dysfunction in relation to circumvallate papilla's taste buds structure upon unilateral maxillary molar extraction in Wistar rats: an
    Mostafa S; Hakam HM; El-Motayam A
    F1000Res; 2019; 8():1667. PubMed ID: 32089825
    [No Abstract]   [Full Text] [Related]  

  • 45. Vismodegib, an antagonist of hedgehog signaling, directly alters taste molecular signaling in taste buds.
    Yang H; Cong WN; Yoon JS; Egan JM
    Cancer Med; 2015 Feb; 4(2):245-52. PubMed ID: 25354792
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A High-Fat Diet Decreases Bone Mass in Growing Mice with Systemic Chronic Inflammation Induced by Low-Dose, Slow-Release Lipopolysaccharide Pellets.
    Cao JJ; Gregoire BR; Shen CL
    J Nutr; 2017 Oct; 147(10):1909-1916. PubMed ID: 28814530
    [No Abstract]   [Full Text] [Related]  

  • 47. Progress and renewal in gustation: new insights into taste bud development.
    Barlow LA
    Development; 2015 Nov; 142(21):3620-9. PubMed ID: 26534983
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.
    Meng L; Ohman-Gault L; Ma L; Krimm RF
    eNeuro; 2015; 2(6):. PubMed ID: 26730405
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Obesity-induced taste dysfunction, and its implications for dietary intake.
    Harnischfeger F; Dando R
    Int J Obes (Lond); 2021 Aug; 45(8):1644-1655. PubMed ID: 34031530
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The probiotic Lactobacillus coryniformis CECT5711 reduces the vascular pro-oxidant and pro-inflammatory status in obese mice.
    Toral M; Gómez-Guzmán M; Jiménez R; Romero M; Sánchez M; Utrilla MP; Garrido-Mesa N; Rodríguez-Cabezas ME; Olivares M; Gálvez J; Duarte J
    Clin Sci (Lond); 2014 Jul; 127(1):33-45. PubMed ID: 24410749
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Aggravated gut inflammation in mice lacking the taste signaling protein α-gustducin.
    Feng P; Chai J; Yi H; Redding K; Margolskee RF; Huang L; Wang H
    Brain Behav Immun; 2018 Jul; 71():23-27. PubMed ID: 29678794
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oro-gustatory perception of dietary lipids and calcium signaling in taste bud cells are altered in nutritionally obesity-prone Psammomys obesus.
    Abdoul-Azize S; Atek-Mebarki F; Bitam A; Sadou H; Koceïr EA; Khan NA
    PLoS One; 2013; 8(8):e68532. PubMed ID: 23936306
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Shh and Ptc are associated with taste bud maintenance in the adult mouse.
    Miura H; Kusakabe Y; Sugiyama C; Kawamatsu M; Ninomiya Y; Motoyama J; Hino A
    Mech Dev; 2001 Aug; 106(1-2):143-5. PubMed ID: 11472844
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Toxic effects on gustatory function.
    Reiter ER; DiNardo LJ; Costanzo RM
    Adv Otorhinolaryngol; 2006; 63():265-277. PubMed ID: 16733344
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Expression of cyclin-dependent kinase inhibitors in taste buds of mouse and hamster.
    Hirota M; Ito T; Okudela K; Kawabe R; Hayashi H; Yazawa T; Fujita K; Kitamura H
    Tissue Cell; 2001 Feb; 33(1):25-32. PubMed ID: 11292167
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Renewal of taste bud cells in rat circumvallate papillae.
    Farbman AI
    Cell Tissue Kinet; 1980 Jul; 13(4):349-57. PubMed ID: 7428010
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Abnormalities of taste.
    Shapiro SL
    Eye Ear Nose Throat Mon; 1974 Jul; 53(7):293 passim. PubMed ID: 4841801
    [No Abstract]   [Full Text] [Related]  

  • 58. Discrete innervation of murine taste buds by peripheral taste neurons.
    Zaidi FN; Whitehead MC
    J Neurosci; 2006 Aug; 26(32):8243-53. PubMed ID: 16899719
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The glossopharyngeal nerve controls epithelial expression of Sprr2a and Krt13 around taste buds in the circumvallate papilla.
    Miura H; Kusakabe Y; Hashido K; Hino A; Ooki M; Harada S
    Neurosci Lett; 2014 Sep; 580():147-52. PubMed ID: 25123441
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Taste bud cell dynamics during normal and sodium-restricted development.
    Hendricks SJ; Brunjes PC; Hill DL
    J Comp Neurol; 2004 Apr; 472(2):173-82. PubMed ID: 15048685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.