These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 29558639)

  • 1. Locomotion Control: Brainstem Circuits Satisfy the Need for Speed.
    Gatto G; Goulding M
    Curr Biol; 2018 Mar; 28(6):R256-R259. PubMed ID: 29558639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locomotor speed control circuits in the caudal brainstem.
    Capelli P; Pivetta C; Soledad Esposito M; Arber S
    Nature; 2017 Nov; 551(7680):373-377. PubMed ID: 29059682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical and brainstem control of locomotion.
    Drew T; Prentice S; Schepens B
    Prog Brain Res; 2004; 143():251-61. PubMed ID: 14653170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensorimotor integration: locating locomotion in neural circuits.
    Samuel AD; Sengupta P
    Curr Biol; 2005 May; 15(9):R341-3. PubMed ID: 15886093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional regeneration of descending brainstem command pathways for locomotion demonstrated in the in vitro lamprey CNS.
    McClellan AD
    Brain Res; 1988 May; 448(2):339-45. PubMed ID: 3378155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brainstem command systems for locomotion in the lamprey: localization of descending pathways in the spinal cord.
    McClellan AD
    Brain Res; 1988 Aug; 457(2):338-49. PubMed ID: 3219560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mesencephalic locomotor region sends a bilateral glutamatergic drive to hindbrain reticulospinal neurons in a tetrapod.
    Ryczko D; Auclair F; Cabelguen JM; Dubuc R
    J Comp Neurol; 2016 May; 524(7):1361-83. PubMed ID: 26470600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypocretinergic neurons are activated in conjunction with goal-oriented survival-related motor behaviors.
    Torterolo P; Ramos OV; Sampogna S; Chase MH
    Physiol Behav; 2011 Oct; 104(5):823-30. PubMed ID: 21839102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-Distance Descending Spinal Neurons Ensure Quadrupedal Locomotor Stability.
    Ruder L; Takeoka A; Arber S
    Neuron; 2016 Dec; 92(5):1063-1078. PubMed ID: 27866798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of postural muscle tone to full expression of posture and locomotor movements: multi-faceted analyses of its setting brainstem-spinal cord mechanisms in the cat.
    Mori S
    Jpn J Physiol; 1989; 39(6):785-809. PubMed ID: 2698966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orienting Movements: Brainstem Neurons at the Wheel.
    Mitrevica Z; Murray AJ
    Curr Biol; 2020 Dec; 30(23):R1418-R1420. PubMed ID: 33290707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phasic modulation of transmission from vestibular inputs to reticulospinal neurons during fictive locomotion in lampreys.
    Bussières N; Dubuc R
    Brain Res; 1992 Jun; 582(1):147-53. PubMed ID: 1323371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The neural control of respiration in lampreys.
    Missaghi K; Le Gal JP; Gray PA; Dubuc R
    Respir Physiol Neurobiol; 2016 Dec; 234():14-25. PubMed ID: 27562521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nematode locomotion: dissecting the neuronal-environmental loop.
    Cohen N; Sanders T
    Curr Opin Neurobiol; 2014 Apr; 25():99-106. PubMed ID: 24709607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anatomy of the soul as reflected in the cerebral hemispheres: neural circuits underlying voluntary control of basic motivated behaviors.
    Swanson LW
    J Comp Neurol; 2005 Dec; 493(1):122-31. PubMed ID: 16254987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The neuronal bases of locomotion in lamprey--in vitro studies of the brainstem-spinal cord.
    Grillner S; Wallén P; Brodin L; Christenson J; Dubuc R; Hill R; Ohta Y
    Acta Biol Hung; 1988; 39(2-3):145-9. PubMed ID: 3077001
    [No Abstract]   [Full Text] [Related]  

  • 17. Grafting of fetal brainstem 5-HT neurons into the sublesional spinal cord of paraplegic rats restores coordinated hindlimb locomotion.
    Sławińska U; Miazga K; Cabaj AM; Leszczyńska AN; Majczyński H; Nagy JI; Jordan LM
    Exp Neurol; 2013 Sep; 247():572-81. PubMed ID: 23481546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-Type-Specific Control of Brainstem Locomotor Circuits by Basal Ganglia.
    Roseberry TK; Lee AM; Lalive AL; Wilbrecht L; Bonci A; Kreitzer AC
    Cell; 2016 Jan; 164(3):526-37. PubMed ID: 26824660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The excitability of lumbar motoneurones in the neonatal rat is increased by a hyperpolarization of their voltage threshold for activation by descending serotonergic fibres.
    Gilmore J; Fedirchuk B
    J Physiol; 2004 Jul; 558(Pt 1):213-24. PubMed ID: 15121804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quinolinic acid lesions of the pedunculopontine nucleus impair sleep architecture, but not locomotion, exploration, emotionality or working memory in the rat.
    Hernández-Chan NG; Góngora-Alfaro JL; Álvarez-Cervera FJ; Solís-Rodríguez FA; Heredia-López FJ; Arankowsky-Sandoval G
    Behav Brain Res; 2011 Dec; 225(2):482-90. PubMed ID: 21856331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.