These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 29558678)

  • 1. The use of single-cell RNA-Seq to understand virus-host interactions.
    Cristinelli S; Ciuffi A
    Curr Opin Virol; 2018 Apr; 29():39-50. PubMed ID: 29558678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Cell Capture, RNA-seq, and Transcriptome Analysis from the Neural Retina.
    Dharmat R; Kim S; Li Y; Chen R
    Methods Mol Biol; 2020; 2092():159-186. PubMed ID: 31786788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metatranscriptomic RNA-Seq Data Analysis of Virus-Infected Host Cells.
    Abu Mazen N; Luc J; Lobb B; Hirota JA; Banerjee A; Doxey AC
    Methods Mol Biol; 2024; 2813():79-94. PubMed ID: 38888771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual RNA-seq Analysis of Patients' Cells and Viral Genome After Measles Infection.
    Pogka V; Mentis A; Karamitros T
    Methods Mol Biol; 2024; 2808():121-127. PubMed ID: 38743366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery and analysis of transcriptome subsets from pooled single-cell RNA-seq libraries.
    Riemondy KA; Ransom M; Alderman C; Gillen AE; Fu R; Finlay-Schultz J; Kirkpatrick GD; Di Paola J; Kabos P; Sartorius CA; Hesselberth JR
    Nucleic Acids Res; 2019 Feb; 47(4):e20. PubMed ID: 30496484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.
    Slovin S; Carissimo A; Panariello F; Grimaldi A; Bouché V; Gambardella G; Cacchiarelli D
    Methods Mol Biol; 2021; 2284():343-365. PubMed ID: 33835452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An accessible, interactive GenePattern Notebook for analysis and exploration of single-cell transcriptomic data.
    Mah CK; Wenzel AT; Juarez EF; Tabor T; Reich MM; Mesirov JP
    F1000Res; 2018; 7():1306. PubMed ID: 31316748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual RNA-seq reveals viral infections in asthmatic children without respiratory illness which are associated with changes in the airway transcriptome.
    Wesolowska-Andersen A; Everman JL; Davidson R; Rios C; Herrin R; Eng C; Janssen WJ; Liu AH; Oh SS; Kumar R; Fingerlin TE; Rodriguez-Santana J; Burchard EG; Seibold MA
    Genome Biol; 2017 Jan; 18(1):12. PubMed ID: 28103897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced sequencing-based high-throughput and long-read single-cell transcriptome analysis.
    Huang S; Shi W; Li S; Fan Q; Yang C; Cao J; Wu L
    Lab Chip; 2024 May; 24(10):2601-2621. PubMed ID: 38669201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DVsc: An Automated Framework for Efficiently Detecting Viral Infection from Single-cell Transcriptomics Data.
    Leng F; Mei S; Zhou X; Liu X; Yuan Y; Xu W; Hao C; Guo R; Hao C; Li W; Zhang P
    Genomics Proteomics Bioinformatics; 2024 Jul; 22(2):. PubMed ID: 39215426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of single-cell RNA-seq to study heterogeneity at varying levels of virus-host interactions.
    Swaminath S; Russell AB
    PLoS Pathog; 2024 Jan; 20(1):e1011898. PubMed ID: 38236826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Analysis of Droplet-Based Ultra-High-Throughput Single-Cell RNA-Seq Systems.
    Zhang X; Li T; Liu F; Chen Y; Yao J; Li Z; Huang Y; Wang J
    Mol Cell; 2019 Jan; 73(1):130-142.e5. PubMed ID: 30472192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Cell Transcriptomics of Immune Cells: Cell Isolation and cDNA Library Generation for scRNA-Seq.
    Arsenio J
    Methods Mol Biol; 2020; 2184():1-18. PubMed ID: 32808214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel method for genome-wide profiling of dynamic host-pathogen interactions using 3' end enriched RNA-seq.
    Li J; He L; Zhang Y; Xue C; Cao Y
    Sci Rep; 2017 Aug; 7(1):8681. PubMed ID: 28819105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting bacterial infection outcomes using single cell RNA-sequencing analysis of human immune cells.
    Bossel Ben-Moshe N; Hen-Avivi S; Levitin N; Yehezkel D; Oosting M; Joosten LAB; Netea MG; Avraham R
    Nat Commun; 2019 Jul; 10(1):3266. PubMed ID: 31332193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.
    Johnson BK; Scholz MB; Teal TK; Abramovitch RB
    BMC Bioinformatics; 2016 Feb; 17():66. PubMed ID: 26847232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revealing the heterogeneity of CD4
    Morgan DM; Shreffler WG; Love JC
    J Allergy Clin Immunol; 2022 Oct; 150(4):748-755. PubMed ID: 36205449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Throughput Sequencing-Based Approaches for Gene Expression Analysis.
    Reddy RRS; Ramanujam MV
    Methods Mol Biol; 2018; 1783():299-323. PubMed ID: 29767369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Throughput Transcriptome Analysis for Investigating Host-Pathogen Interactions.
    Aquime Gonçalves AN; Escolano Maso V; Maia Santos de Castro Í; Pereira Vasconcelos A; Tomio Ogava RL; I Nakaya H
    J Vis Exp; 2022 Mar; (181):. PubMed ID: 35311811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.