BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 29558678)

  • 1. The use of single-cell RNA-Seq to understand virus-host interactions.
    Cristinelli S; Ciuffi A
    Curr Opin Virol; 2018 Apr; 29():39-50. PubMed ID: 29558678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Cell Capture, RNA-seq, and Transcriptome Analysis from the Neural Retina.
    Dharmat R; Kim S; Li Y; Chen R
    Methods Mol Biol; 2020; 2092():159-186. PubMed ID: 31786788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metatranscriptomic RNA-Seq Data Analysis of Virus-Infected Host Cells.
    Abu Mazen N; Luc J; Lobb B; Hirota JA; Banerjee A; Doxey AC
    Methods Mol Biol; 2024; 2813():79-94. PubMed ID: 38888771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual RNA-seq Analysis of Patients' Cells and Viral Genome After Measles Infection.
    Pogka V; Mentis A; Karamitros T
    Methods Mol Biol; 2024; 2808():121-127. PubMed ID: 38743366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery and analysis of transcriptome subsets from pooled single-cell RNA-seq libraries.
    Riemondy KA; Ransom M; Alderman C; Gillen AE; Fu R; Finlay-Schultz J; Kirkpatrick GD; Di Paola J; Kabos P; Sartorius CA; Hesselberth JR
    Nucleic Acids Res; 2019 Feb; 47(4):e20. PubMed ID: 30496484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.
    Slovin S; Carissimo A; Panariello F; Grimaldi A; Bouché V; Gambardella G; Cacchiarelli D
    Methods Mol Biol; 2021; 2284():343-365. PubMed ID: 33835452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An accessible, interactive GenePattern Notebook for analysis and exploration of single-cell transcriptomic data.
    Mah CK; Wenzel AT; Juarez EF; Tabor T; Reich MM; Mesirov JP
    F1000Res; 2018; 7():1306. PubMed ID: 31316748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual RNA-seq reveals viral infections in asthmatic children without respiratory illness which are associated with changes in the airway transcriptome.
    Wesolowska-Andersen A; Everman JL; Davidson R; Rios C; Herrin R; Eng C; Janssen WJ; Liu AH; Oh SS; Kumar R; Fingerlin TE; Rodriguez-Santana J; Burchard EG; Seibold MA
    Genome Biol; 2017 Jan; 18(1):12. PubMed ID: 28103897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced sequencing-based high-throughput and long-read single-cell transcriptome analysis.
    Huang S; Shi W; Li S; Fan Q; Yang C; Cao J; Wu L
    Lab Chip; 2024 May; 24(10):2601-2621. PubMed ID: 38669201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of single-cell RNA-seq to study heterogeneity at varying levels of virus-host interactions.
    Swaminath S; Russell AB
    PLoS Pathog; 2024 Jan; 20(1):e1011898. PubMed ID: 38236826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Analysis of Droplet-Based Ultra-High-Throughput Single-Cell RNA-Seq Systems.
    Zhang X; Li T; Liu F; Chen Y; Yao J; Li Z; Huang Y; Wang J
    Mol Cell; 2019 Jan; 73(1):130-142.e5. PubMed ID: 30472192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Cell Transcriptomics of Immune Cells: Cell Isolation and cDNA Library Generation for scRNA-Seq.
    Arsenio J
    Methods Mol Biol; 2020; 2184():1-18. PubMed ID: 32808214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel method for genome-wide profiling of dynamic host-pathogen interactions using 3' end enriched RNA-seq.
    Li J; He L; Zhang Y; Xue C; Cao Y
    Sci Rep; 2017 Aug; 7(1):8681. PubMed ID: 28819105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting bacterial infection outcomes using single cell RNA-sequencing analysis of human immune cells.
    Bossel Ben-Moshe N; Hen-Avivi S; Levitin N; Yehezkel D; Oosting M; Joosten LAB; Netea MG; Avraham R
    Nat Commun; 2019 Jul; 10(1):3266. PubMed ID: 31332193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.
    Johnson BK; Scholz MB; Teal TK; Abramovitch RB
    BMC Bioinformatics; 2016 Feb; 17():66. PubMed ID: 26847232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revealing the heterogeneity of CD4
    Morgan DM; Shreffler WG; Love JC
    J Allergy Clin Immunol; 2022 Oct; 150(4):748-755. PubMed ID: 36205449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Throughput Sequencing-Based Approaches for Gene Expression Analysis.
    Reddy RRS; Ramanujam MV
    Methods Mol Biol; 2018; 1783():299-323. PubMed ID: 29767369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Missing data and technical variability in single-cell RNA-sequencing experiments.
    Hicks SC; Townes FW; Teng M; Irizarry RA
    Biostatistics; 2018 Oct; 19(4):562-578. PubMed ID: 29121214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Throughput Transcriptome Analysis for Investigating Host-Pathogen Interactions.
    Aquime Gonçalves AN; Escolano Maso V; Maia Santos de Castro Í; Pereira Vasconcelos A; Tomio Ogava RL; I Nakaya H
    J Vis Exp; 2022 Mar; (181):. PubMed ID: 35311811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.