BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 29558681)

  • 21. A simple instrument-free gaseous chlorine dioxide method for microbial decontamination of potatoes during storage.
    Wu VC; Rioux A
    Food Microbiol; 2010 Feb; 27(1):179-84. PubMed ID: 19913711
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Survival of Enterobacter sakazakii on fresh produce as affected by temperature, and effectiveness of sanitizers for its elimination.
    Kim H; Ryu JH; Beuchat LR
    Int J Food Microbiol; 2006 Sep; 111(2):134-43. PubMed ID: 16891023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficacy of gaseous chlorine dioxide in inactivating Bacillus cereus spores attached to and in a biofilm on stainless steel.
    Nam H; Seo HS; Bang J; Kim H; Beuchat LR; Ryu JH
    Int J Food Microbiol; 2014 Oct; 188():122-7. PubMed ID: 25090607
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of chlorine dioxide and sodium chlorite on erythrocytes of A/J and C57L/J mice.
    Moore GS; Calabrese EJ
    J Environ Pathol Toxicol; 1980 Sep; 4(2-3):513-24. PubMed ID: 7462915
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inactivation of E. coli O157:H7 on blueberries by electrolyzed water, ultraviolet light, and ozone.
    Kim C; Hung YC
    J Food Sci; 2012 Apr; 77(4):M206-11. PubMed ID: 22352693
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inactivation of Salmonella enterica in chicken feces on the surface of eggshells by simultaneous treatments with gaseous chlorine dioxide and mild wet heat.
    Park S; Beuchat LR; Kim H; Ryu JH
    Food Microbiol; 2017 Apr; 62():202-206. PubMed ID: 27889149
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inactivation of Escherichia Coli O157:H7 and Salmonella Enterica on Blueberries in Water Using Ultraviolet Light.
    Liu C; Huang Y; Chen H
    J Food Sci; 2015 Jul; 80(7):M1532-7. PubMed ID: 25998253
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extension of shelf life of semi-dry longan pulp with gaseous chlorine dioxide generating film.
    Lin X; Chen G; Jin TZ; Wen M; Wu J; Wen J; Xu Y; An K; Yu Y
    Int J Food Microbiol; 2021 Jan; 337():108938. PubMed ID: 33166912
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitigation of Alicyclobacillus spp. spores on food contact surfaces with aqueous chlorine dioxide and hypochlorite.
    Friedrich LM; Goodrich-Schneider R; Parish ME; Danyluk MD
    Food Microbiol; 2009 Dec; 26(8):936-41. PubMed ID: 19835785
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetics of the Inactivation of Vibrio parahaemolyticus in Weakly Acidic Sodium Chlorite Solution.
    Takahashi K; Tanaka R; Fukuzaki S
    Biocontrol Sci; 2017; 22(1):25-30. PubMed ID: 28367867
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pressure inactivation of Tulane virus, a candidate surrogate for human norovirus and its potential application in food industry.
    Li X; Ye M; Neetoo H; Golovan S; Chen H
    Int J Food Microbiol; 2013 Mar; 162(1):37-42. PubMed ID: 23353553
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of high hydrostatic pressure inactivation of human norovirus on strawberries, blueberries, raspberries and in their purees.
    Huang R; Ye M; Li X; Ji L; Karwe M; Chen H
    Int J Food Microbiol; 2016 Apr; 223():17-24. PubMed ID: 26874862
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Disinfection kinetics of murine norovirus using chlorine and chlorine dioxide.
    Lim MY; Kim JM; Ko G
    Water Res; 2010 May; 44(10):3243-51. PubMed ID: 20356616
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of inactivation of Listeria monocytogenes within a biofilm matrix using chlorine dioxide gas, aqueous chlorine dioxide and sodium hypochlorite treatments.
    Vaid R; Linton RH; Morgan MT
    Food Microbiol; 2010 Dec; 27(8):979-84. PubMed ID: 20832674
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A field study evaluation for mitigating biofouling with chlorine dioxide or chlorine integrated with UV disinfection.
    Rand JL; Hofmann R; Alam MZ; Chauret C; Cantwell R; Andrews RC; Gagnon GA
    Water Res; 2007 May; 41(9):1939-48. PubMed ID: 17383708
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Disinfecting capabilities of oxychlorine compounds.
    Noss CI; Olivieri VP
    Appl Environ Microbiol; 1985 Nov; 50(5):1162-4. PubMed ID: 3911893
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pulsed light inactivation of murine norovirus, Tulane virus, Escherichia coli O157:H7 and Salmonella in suspension and on berry surfaces.
    Huang Y; Ye M; Cao X; Chen H
    Food Microbiol; 2017 Feb; 61():1-4. PubMed ID: 27697158
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal effect on Mesocyclops leukarti and mutagenicity with chlorine dioxide.
    Zuo JL; Cui FY; Qu B; Zhu GB
    J Environ Sci (China); 2006; 18(5):891-6. PubMed ID: 17278743
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measurement of the virolysis of human GII.4 norovirus in response to disinfectants and sanitisers.
    Nowak P; Topping JR; Fotheringham V; Gallimore CI; Gray JJ; Iturriza-Gómara M; Knight AI
    J Virol Methods; 2011 Jun; 174(1-2):7-11. PubMed ID: 21414362
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production and stability of chlorine dioxide in organic acid solutions as affected by pH, type of acid, and concentration of sodium chlorite, and its effectiveness in inactivating Bacillus cereus spores.
    Kim H; Kang Y; Beuchat LR; Ryu JH
    Food Microbiol; 2008 Dec; 25(8):964-9. PubMed ID: 18954731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.