These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 29558790)

  • 21. Monitoring the development of a microbial electrolysis cell bioanode using an electrochemical quartz crystal microbalance.
    Kleijn JM; Lhuillier Q; Jeremiasse AW
    Bioelectrochemistry; 2010 Oct; 79(2):272-5. PubMed ID: 20494628
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Electrochemically active microorganisms and electrolytically assisted fermentative hydrogen production--a review].
    Li J; Zhang W; Yin F; Xu R; Chen Y
    Wei Sheng Wu Xue Bao; 2009 Jun; 49(6):697-702. PubMed ID: 19673403
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A study of electron source preference and its impact on hydrogen production in microbial electrolysis cells fed with synthetic fermentation effluent.
    Choi Y; Kim D; Choi H; Cha J; Baek G; Lee C
    Bioengineered; 2023 Dec; 14(1):2244759. PubMed ID: 37598370
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of various cheese whey treatment scenarios in single-chamber microbial electrolysis cells for improved biohydrogen production.
    Rivera I; Bakonyi P; Cuautle-Marín MA; Buitrón G
    Chemosphere; 2017 May; 174():253-259. PubMed ID: 28171841
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioanode as a limiting factor to biocathode performance in microbial electrolysis cells.
    Lim SS; Yu EH; Daud WRW; Kim BH; Scott K
    Bioresour Technol; 2017 Aug; 238():313-324. PubMed ID: 28454006
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibitory effects of furan derivatives and phenolic compounds on dark hydrogen fermentation.
    Lin R; Cheng J; Ding L; Song W; Zhou J; Cen K
    Bioresour Technol; 2015 Nov; 196():250-5. PubMed ID: 26247976
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The impact of anode acclimation strategy on microbial electrolysis cell treating hydrogen fermentation effluent.
    Li X; Zhang R; Qian Y; Angelidaki I; Zhang Y
    Bioresour Technol; 2017 Jul; 236():37-43. PubMed ID: 28390275
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biotransformation of furfural and 5-hydroxymethyl furfural (HMF) by Clostridium acetobutylicum ATCC 824 during butanol fermentation.
    Zhang Y; Han B; Ezeji TC
    N Biotechnol; 2012 Feb; 29(3):345-51. PubMed ID: 21925629
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbial electrolysis cells for the production of biohydrogen in dark fermentation - A review.
    Lee HS; Xin W; Katakojwala R; Venkata Mohan S; Tabish NMD
    Bioresour Technol; 2022 Nov; 363():127934. PubMed ID: 36100184
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells.
    Lu L; Xing D; Liu B; Ren N
    Water Res; 2012 Mar; 46(4):1015-26. PubMed ID: 22197264
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved bio-hydrogen production from glucose by adding a specific methane inhibitor to microbial electrolysis cells with a double anode arrangement.
    Zhang J; Bai Y; Fan Y; Hou H
    J Biosci Bioeng; 2016 Oct; 122(4):488-93. PubMed ID: 27094956
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of furan derivatives on biohydrogen fermentation from wet steam-exploded cornstalk and its microbial community.
    Liu Z; Zhang C; Wang L; He J; Li B; Zhang Y; Xing XH
    Bioresour Technol; 2015 Jan; 175():152-9. PubMed ID: 25459816
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbial degradation of furanic compounds: biochemistry, genetics, and impact.
    Wierckx N; Koopman F; Ruijssenaars HJ; de Winde JH
    Appl Microbiol Biotechnol; 2011 Dec; 92(6):1095-105. PubMed ID: 22031465
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran.
    Liu ZL; Slininger PJ; Dien BS; Berhow MA; Kurtzman CP; Gorsich SW
    J Ind Microbiol Biotechnol; 2004 Sep; 31(8):345-52. PubMed ID: 15338422
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detoxification of acidic biorefinery waste liquor for production of high value amino acid.
    Christopher M; Anusree M; Mathew AK; Nampoothiri KM; Sukumaran RK; Pandey A
    Bioresour Technol; 2016 Aug; 213():270-275. PubMed ID: 26996259
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioconversion of Furanic Compounds by
    Kriechbaum R; Spadiut O; Kopp J
    Microorganisms; 2024 Jun; 12(6):. PubMed ID: 38930604
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The source of inoculum plays a defining role in the development of MEC microbial consortia fed with acetic and propionic acid mixtures.
    Ruiz V; Ilhan ZE; Kang DW; Krajmalnik-Brown R; Buitrón G
    J Biotechnol; 2014 Jul; 182-183():11-8. PubMed ID: 24798298
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heavy metal recovery combined with H₂ production from artificial acid mine drainage using the microbial electrolysis cell.
    Luo H; Liu G; Zhang R; Bai Y; Fu S; Hou Y
    J Hazard Mater; 2014 Apr; 270():153-9. PubMed ID: 24576695
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Shift of biofilm and suspended bacterial communities with changes in anode potential in a microbial electrolysis cell treating primary sludge.
    Zakaria BS; Lin L; Dhar BR
    Sci Total Environ; 2019 Nov; 689():691-699. PubMed ID: 31280150
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new source of resistance to 2-furaldehyde from Scheffersomyces (Pichia) stipitis for sustainable lignocellulose-to-biofuel conversion.
    Wang X; Lewis Liu Z; Zhang X; Ma M
    Appl Microbiol Biotechnol; 2017 Jun; 101(12):4981-4993. PubMed ID: 28357544
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.