These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29558796)

  • 41. Rate constants for the thermal decomposition of ethanol and its bimolecular reactions with OH and D: reflected shock tube and theoretical studies.
    Sivaramakrishnan R; Su MC; Michael JV; Klippenstein SJ; Harding LB; Ruscic B
    J Phys Chem A; 2010 Sep; 114(35):9425-39. PubMed ID: 20715882
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Theoretical Study on the Unimolecular Pyrolysis of Thiophene and Modeling.
    Li T; Zhang H; Li Y; Li J; Wang J; Xiao J
    ACS Omega; 2021 Aug; 6(31):20471-20482. PubMed ID: 34395994
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of new Ab initio rate coefficients on predictions of species formed during n-butanol ignition and pyrolysis.
    Karwat DM; Wooldridge MS; Klippenstein SJ; Davis MJ
    J Phys Chem A; 2015 Jan; 119(4):543-51. PubMed ID: 25560388
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ab Initio Chemical Kinetics for the CH3 + O((3)P) Reaction and Related Isomerization-Decomposition of CH3O and CH2OH Radicals.
    Xu ZF; Raghunath P; Lin MC
    J Phys Chem A; 2015 Jul; 119(28):7404-17. PubMed ID: 25751420
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Kinetics of the Methanol Reaction with OH at Interstellar, Atmospheric, and Combustion Temperatures.
    Gao LG; Zheng J; Fernández-Ramos A; Truhlar DG; Xu X
    J Am Chem Soc; 2018 Feb; 140(8):2906-2918. PubMed ID: 29299932
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Experimental determination of the high-temperature rate constant for the reaction of OH with sec-butanol.
    Pang GA; Hanson RK; Golden DM; Bowman CT
    J Phys Chem A; 2012 Oct; 116(39):9607-13. PubMed ID: 22946741
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An ab initio/rice--Ramsperger--Kassel--Marcus study of the reactions of propenols with OH. Mechanism and kinetics of H abstraction channels.
    Zhou CW; Mebel AM; Li XY
    J Phys Chem A; 2009 Oct; 113(40):10667-77. PubMed ID: 19746962
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Computational Study of the Reaction of Dimethyl Ether with Nitric Oxide. Mechanism and Kinetic Modeling.
    Song Y; Liu R; Guan Y; Gao J; Lou J; Ma H; Song J
    J Phys Chem A; 2019 Jan; 123(1):26-36. PubMed ID: 30565940
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Variational Effect and Anharmonic Torsion on Kinetic Modeling for Initiation Reaction of Dimethyl Ether Combustion.
    Guan Y; Gao J; Song Y; Li Y; Ma H; Song J
    J Phys Chem A; 2017 Feb; 121(5):1121-1132. PubMed ID: 28117583
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reaction kinetics of hydrogen abstraction reactions by hydroperoxyl radical from 2-methyltetrahydrofuran and 2,5-dimethyltetrahydrofuran.
    Chakravarty HK; Fernandes RX
    J Phys Chem A; 2013 Jun; 117(24):5028-41. PubMed ID: 23713783
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Time-resolved gas-phase kinetic, quantum chemical, and RRKM studies of reactions of silylene with alcohols.
    Becerra R; Cannady JP; Walsh R
    J Phys Chem A; 2011 May; 115(17):4231-40. PubMed ID: 21469721
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ab initio based potential energy surface and kinetics study of the OH + NH3 hydrogen abstraction reaction.
    Monge-Palacios M; Rangel C; Espinosa-Garcia J
    J Chem Phys; 2013 Feb; 138(8):084305. PubMed ID: 23464149
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Theoretical and kinetic study of the reactions of ketones with HO2 radicals. Part I: abstraction reaction channels.
    Mendes J; Zhou CW; Curran HJ
    J Phys Chem A; 2013 Jun; 117(22):4515-25. PubMed ID: 23590552
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Kinetics of the hydrogen atom abstraction reactions from 1-butanol by hydroxyl radical: theory matches experiment and more.
    Seal P; Oyedepo G; Truhlar DG
    J Phys Chem A; 2013 Jan; 117(2):275-82. PubMed ID: 23244297
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Thermochemistry and Kinetic Analysis of the Unimolecular Oxiranyl Radical Dissociation Reaction: A Theoretical Study.
    Wang H; Bozzelli JW
    Chemphyschem; 2016 Jul; 17(13):1983-92. PubMed ID: 26990491
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Theoretical study of H-abstraction reactions from CH3Cl and CH3Br molecules by ClO and BrO radicals.
    Canneaux S; Hammaecher C; Cours T; Louis F; Ribaucour M
    J Phys Chem A; 2012 May; 116(17):4396-408. PubMed ID: 22530645
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Degradation of Carbonyl Hydroperoxides in the Atmosphere and in Combustion.
    Xing L; Bao JL; Wang Z; Zhang F; Truhlar DG
    J Am Chem Soc; 2017 Nov; 139(44):15821-15835. PubMed ID: 29022349
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An Experimental and Theoretical Investigation of 1-Butanol Pyrolysis.
    Rosi M; Skouteris D; Balucani N; Nappi C; Faginas Lago N; Pacifici L; Falcinelli S; Stranges D
    Front Chem; 2019; 7():326. PubMed ID: 31139618
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanistic and kinetic study of the O + CH2OH reaction.
    Hou H; Wang B
    J Phys Chem A; 2005 Jun; 109(21):4796-803. PubMed ID: 16833823
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Computational study of the reactions of methanol with the hydroperoxyl and methyl radicals. 2. Accurate thermal rate constants.
    Alecu IM; Truhlar DG
    J Phys Chem A; 2011 Dec; 115(51):14599-611. PubMed ID: 22059377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.