BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 29558892)

  • 1. Global analysis of primary mesenchyme cell cis-regulatory modules by chromatin accessibility profiling.
    Shashikant T; Khor JM; Ettensohn CA
    BMC Genomics; 2018 Mar; 19(1):206. PubMed ID: 29558892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network.
    Ettensohn CA; Kitazawa C; Cheers MS; Leonard JD; Sharma T
    Development; 2007 Sep; 134(17):3077-87. PubMed ID: 17670786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins.
    Rafiq K; Shashikant T; McManus CJ; Ettensohn CA
    Development; 2014 Feb; 141(4):950-61. PubMed ID: 24496631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Architecture and evolution of the
    Khor JM; Ettensohn CA
    Elife; 2022 Feb; 11():. PubMed ID: 35212624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network.
    Sun Z; Ettensohn CA
    Gene Expr Patterns; 2014 Nov; 16(2):93-103. PubMed ID: 25460514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precise cis-regulatory control of spatial and temporal expression of the alx-1 gene in the skeletogenic lineage of s. purpuratus.
    Damle S; Davidson EH
    Dev Biol; 2011 Sep; 357(2):505-17. PubMed ID: 21723273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide identification of binding sites and gene targets of Alx1, a pivotal regulator of echinoderm skeletogenesis.
    Khor JM; Guerrero-Santoro J; Ettensohn CA
    Development; 2019 Aug; 146(16):. PubMed ID: 31331943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The genomic regulatory control of skeletal morphogenesis in the sea urchin.
    Rafiq K; Cheers MS; Ettensohn CA
    Development; 2012 Feb; 139(3):579-90. PubMed ID: 22190640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Widespread priming of transcriptional regulatory elements by incipient accessibility or RNA polymerase II pause in early embryos of the sea urchin Strongylocentrotus purpuratus.
    Arenas-Mena C; Akin S
    Genetics; 2023 Oct; 225(2):. PubMed ID: 37551428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide discovery of active regulatory elements and transcription factor footprints in
    Ho MCW; Quintero-Cadena P; Sternberg PW
    Genome Res; 2017 Dec; 27(12):2108-2119. PubMed ID: 29074739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide analysis of chromatin accessibility using ATAC-seq.
    Shashikant T; Ettensohn CA
    Methods Cell Biol; 2019; 151():219-235. PubMed ID: 30948010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Snail repressor is required for PMC ingression in the sea urchin embryo.
    Wu SY; McClay DR
    Development; 2007 Mar; 134(6):1061-70. PubMed ID: 17287249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The control of foxN2/3 expression in sea urchin embryos and its function in the skeletogenic gene regulatory network.
    Rho HK; McClay DR
    Development; 2011 Mar; 138(5):937-45. PubMed ID: 21303847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From genome to anatomy: The architecture and evolution of the skeletogenic gene regulatory network of sea urchins and other echinoderms.
    Shashikant T; Khor JM; Ettensohn CA
    Genesis; 2018 Oct; 56(10):e23253. PubMed ID: 30264451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Twist is an essential regulator of the skeletogenic gene regulatory network in the sea urchin embryo.
    Wu SY; Yang YP; McClay DR
    Dev Biol; 2008 Jul; 319(2):406-15. PubMed ID: 18495103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolution of a new cell type was associated with competition for a signaling ligand.
    Ettensohn CA; Adomako-Ankomah A
    PLoS Biol; 2019 Sep; 17(9):e3000460. PubMed ID: 31532765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulative deployment of the skeletogenic gene regulatory network during sea urchin development.
    Sharma T; Ettensohn CA
    Development; 2011 Jun; 138(12):2581-90. PubMed ID: 21610034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lessons from a transcription factor: Alx1 provides insights into gene regulatory networks, cellular reprogramming, and cell type evolution.
    Ettensohn CA; Guerrero-Santoro J; Khor JM
    Curr Top Dev Biol; 2022; 146():113-148. PubMed ID: 35152981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implication of HpEts in gene regulatory networks responsible for specification of sea urchin skeletogenic primary mesenchyme cells.
    Yajima M; Umeda R; Fuchikami T; Kataoka M; Sakamoto N; Yamamoto T; Akasaka K
    Zoolog Sci; 2010 Aug; 27(8):638-46. PubMed ID: 20695779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental cis-regulatory analysis of the cyclin D gene in the sea urchin Strongylocentrotus purpuratus.
    McCarty CM; Coffman JA
    Biochem Biophys Res Commun; 2013 Oct; 440(3):413-8. PubMed ID: 24090975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.